449 research outputs found

    Comprehensive assessment of patient image quality and radiation dose in latest generation cardiac x-ray equipment for percutaneous coronary interventions

    Get PDF
    This study aimed to determine whether a reduction in radiation dose was found for percutaneous coronary interventional (PCI) patients using a new cardiac interventional X-ray system with state-of-the-art image enhancement and X-ray optimisation, compared to the current generation X-ray system, and to determine the corresponding impact on clinical image quality. Patient procedure dose area product (DAP) and fluoroscopy duration of 131 PCI patient cases from each X-ray system were compared using a Wilcoxon test on median values. Significant reductions in patient dose (p<<0.001) were found for the new system with no significant change in fluoroscopy duration (p=0.2); procedure DAP reduced by 64%, fluoroscopy DAP by 51% and “cine” acquisition DAP by 76%. The image quality of 15 patient angiograms from each X-ray system (30 total) was scored by 75 clinical professionals on a continuous scale for the ability to determine the presence and severity of stenotic lesions; image quality scores were analysed using a two-sample t-test. Image quality was reduced by 9% (p<<0.001) for the new X-ray system. This demonstrates a substantial reduction in patient dose, from acquisition more than fluoroscopy imaging, with slightly reduced image quality, for the new X-ray system compared to the current generation system

    Detection of Single Molecules Illuminated by a Light-Emitting Diode

    Get PDF
    Optical detection and spectroscopy of single molecules has become an indispensable tool in biological imaging and sensing. Its success is based on fluorescence of organic dye molecules under carefully engineered laser illumination. In this paper we demonstrate optical detection of single molecules on a wide-field microscope with an illumination based on a commercially available, green light-emitting diode. The results are directly compared with laser illumination in the same experimental configuration. The setup and the limiting factors, such as light transfer to the sample, spectral filtering and the resulting signal-to-noise ratio are discussed. A theoretical and an experimental approach to estimate these parameters are presented. The results can be adapted to other single emitter and illumination schemes.Comment: 7 pages, 5 figure

    Quantitative evaluation of the effect of attenuation correction in SPECT images with CT-derived attenuation

    Get PDF
    In this study, we assessed the importance of attenuation correction by quantitative evaluation of errors associated with attenuation in myocardial SPECT in a phantom study. To do attenuation correction we use an attenuation map derived from X-ray CT data. The succession of attenuation correction highly depends on high quality of attenuation maps. CT derived attenuation map in related to non-uniform attenuation correction is used to do transmission dependent scatter correction. The OSEM algorithm with attenuation model was developed and used for attenuation correction during image reconstruction. Finally a comparison was done between reconstructed images using our OSEM code and analytical FBP method. The results of measurements show that: Our programs are capable to reconstruct SPECT images and correct the attenuation effects. Moreover to evaluate reconstructed image quality before and after attenuation correction we applied a famous approach using Image Quality Index. Attenuation correction increases the quality and quantity factors in both methods. This increasing is independent of activity in quantity factor and decrease with activity in quality factor. Both quantitative and qualitative of SPECT images were improved by attenuation correction. In both OSEM and FBP the activity ratio of heart phantom in comparison with the markers was very increased. So the attenuation correction in fat patients and low activity is recommended. Attenuation correction with CT images and OSEM reconstruction in the condition of complete registration yields superior results

    Extra patient movement during mammographic imaging : an experimental study

    Get PDF
    Objectives: To determine if movement external to the patient occurring during mammography may be a source of image blur. Methods: Four mammography machines with seven flexible and nine fixed paddles were evaluated. In the first stage, movement at the paddle was measured mechanically using two calibrated linear potentiometers. A deformable breast phantom was used to mimic a female breast. For each paddle, the movement in millimeters and change in compression force in Newton was recorded at 0.5 and 1 second intervals respectively for 40 seconds with the phantom in an initially compressed state under a load of 80N. In the second stage, clinical audit on 28 females was conducted on one mammography machine with the 18x24cm and 24x29cm flexible paddles. Results: Movement at the paddle followed an exponential decay with a settling period of approximately 40 seconds. The compression force readings for both fixed and flexible paddles decreased exponentially with time while fixed paddles have a larger drop in compression force than flexible paddles. There is a linear relationship between movement at the paddle and change in compression force. Conclusions: Movement measured at the paddle during an exposure can be represented by a second order system. The amount of extra-patient movement during the actual exposure can be estimated using the linear relationship between movement at the paddle and the change in compression force. Advances in knowledge: This research provides a possible explanation to mammography image blurring caused by extra patient movement and proposes a theoretical model to analyze the movement

    Slow light for deep tissue imaging with ultrasound modulation

    Get PDF
    Slow light has been extensively studied for applications ranging from optical delay lines to single photon quantum storage. Here, we show that the time delay of slow-light significantly improves the performance of the narrowband spectral filters needed to optically detect ultrasound from deep inside highly scatteringtissue. We demonstrate this capability with a 9 cm thick tissue phantom, having 10 cm^(−1) reduced scattering coefficient, and achieve an unprecedented background-free signal. Based on the data, we project real time imaging at video rates in even thicker phantoms and possibly deep enough into real tissue for clinical applications like early cancer detection

    The auditory anatomy of the minke whale (Balaenoptera acutorostrata) : a potential fatty sound reception pathway in a baleen whale

    Get PDF
    Author Posting. © John Wiley & Sons, 2012. This article is posted here under terms and conditions set forth in the Wiley Online Library. The definitive version was published in The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology 295 (2012): 991-998, doi:10.1002/ar.22459.Cetaceans possess highly derived auditory systems adapted for underwater hearing. Odontoceti (toothed whales) are thought to receive sound through specialized fat bodies that contact the tympanoperiotic complex, the bones housing the middle and inner ears. However, sound reception pathways remain unknown in Mysticeti (baleen whales), which have very different cranial anatomies compared to odontocetes. Here, we report a potential fatty sound reception pathway in the minke whale (Balaenoptera acutorostrata), a mysticete of the balaenopterid family. The cephalic anatomy of seven minke whales was investigated using computerized tomography and magnetic resonance imaging, verified through dissections. Findings include a large, well-formed fat body lateral, dorsal, and posterior to the mandibular ramus and lateral to the tympanoperiotic complex. This fat body inserts into the tympanoperiotic complex at the lateral aperture between the tympanic and periotic bones and is in contact with the ossicles. There is also a second, smaller body of fat found within the tympanic bone, which contacts the ossicles as well. This is the first analysis of these fatty tissues' association with the auditory structures in a mysticete, providing anatomical evidence that fatty sound reception pathways may not be a unique feature of odontocete cetaceans

    Flat-panel detectors: how much better are they?

    Get PDF
    Interventional and fluoroscopic imaging procedures for pediatric patients are becoming more prevalent because of the less-invasive nature of these procedures compared to alternatives such as surgery. Flat-panel X-ray detectors (FPD) for fluoroscopy are a new technology alternative to the image intensifier/TV (II/TV) digital system that has been in use for more than two decades. Two major FPD technologies have been implemented, based on indirect conversion of X-rays to light (using an X-ray scintillator) and then to proportional charge (using a photodiode), or direct conversion of X-rays into charge (using a semiconductor material) for signal acquisition and digitization. These detectors have proved very successful for high-exposure interventional procedures but lack the image quality of the II/TV system at the lowest exposure levels common in fluoroscopy. The benefits for FPD image quality include lack of geometric distortion, little or no veiling glare, a uniform response across the field-of-view, and improved ergonomics with better patient access. Better detective quantum efficiency indicates the possibility of reducing the patient dose in accordance with ALARA principles. However, first-generation FPD devices have been implemented with less than adequate acquisition flexibility (e.g., lack of tableside controls/information, inability to easily change protocols) and the presence of residual signals from previous exposures, and additional cost of equipment and long-term maintenance have been serious impediments to purchase and implementation. Technological advances of second generation and future hybrid FPD systems should solve many current issues. The answer to the question ‘how much better are they?–is ‘significantly better– and they are certainly worth consideration for replacement or new implementation of an imaging suite for pediatric fluoroscopy

    Computer tomographic investigation of subcutaneous adipose tissue as an indicator of body composition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Modern computer tomography (CT) equipment can be used to acquire whole-body data from large animals such as pigs in minutes or less. In some circumstances, computer assisted analysis of the resulting image data can identify and measure anatomical features. The thickness of subcutaneous adipose tissue at a specific site measured by ultrasound, is used in the pig industry to assess adiposity and inform management decisions that have an impact on reproduction, food conversion performance and sow longevity. The measurement site, called "P2", is used throughout the industry. We propose that CT can be used to measure subcutaneous adipose tissue thickness and identify novel measurement sites that can be used as predictors of general adiposity.</p> <p>Methods</p> <p>Growing pigs (<it>N </it>= 12), were each CT scanned on three occasions. From these data the total volume of adipose tissue was determined and expressed as a proportion of total volume (fat-index). A computer algorithm was used to determined 10,201 subcutaneous adipose thickness measurements in each pig for each scan. From these data, sites were selected where correlation with fat-index was optimal.</p> <p>Results</p> <p>Image analysis correctly identified the limits of the relevant tissues and automated measurements were successfully generated. Two sites on the animal were identified where there was optimal correlation with fat-index. The first of these was located 4 intercostal spaces cranial to the caudal extremity of the last rib, the other, a further 5 intercostal spaces cranially.</p> <p>Conclusion</p> <p>The approach to image analysis reported permits the creation of various maps showing adipose thickness or correlation of thickness with other variables by location on the surface of the pig. The method identified novel adipose thickness measurement positions that are superior (as predictors of adiposity) to the site which is in current use. A similar approach could be used in other situations to quantify potential links between subcutaneous adiposity and disease or production traits.</p

    Patient dose reduction during voiding cystourethrography

    Get PDF
    Voiding cystourethrography (VCUG) is a commonly performed examination in a pediatric uroradiology practice. This article contains suggestions on how the radiation dose to a child from VCUG can be made ‘as low as reasonably achievable–(ALARA). The pediatric radiologist should consider the appropriateness of the clinical indication before performing VCUG and utilize radiation exposure techniques and parameters during VCUG to reduce radiation exposure to a child. The medical physicist and fluoroscope manufacturer can also work together to optimize a pulsed-fluoroscopy unit and further reduce the radiation exposure. Laboratory and clinical research is necessary to investigate methods that reduce radiation exposures during VCUG, and current research is presented here
    corecore