
STRUCTURAL CONTROL AND HEALTH MONITORING
Struct. Control Health Monit. (in press)
Published online in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/stc.178

Convergence and frequency-domain analysis of a discrete
first-order model reference adaptive controller

Oreste S. Bursi1,*,y,z, D. P. Stoten1,z and Leonardo Vulcan2,}

1Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, U.K.
2Department of Mechanical and Structural Engineering, University of Trento, 38050 Trento, Italy

SUMMARY

We study the convergence properties of a direct model reference adaptive control system by applying
techniques from numerical analysis. In particular, a first-order discrete system coupled to a minimal
control synthesis algorithm discretized by the one-step one-stage zero-order-hold sampling is studied. This
results in a strongly non-linear dynamic system owing to the adaptive mechanism where stability at steady
state, i.e. at the operating point, equates to successful control. This paper focuses on the convergence
analysis of the overall dynamical system for understanding accuracy, stability and performance at steady-
state. The local stability of the steady state solution is considered by linearizing the system in the
neighbourhood of an operating point when the input is a step function. This analysis allows us to specify
two gain space domains which define the region of local stability. Moreover, both the accuracy and the
frequency-domain analyses give insight into the range of adaptive control weightings that results in optimal
performance of the minimal control synthesis algorithm and also highlights a possible approach to a priori
selection of the time step and adaptive weighting values.
The effectiveness of the proposed analysis is further demonstrated by simulations and experiments on a

first-order plant. Copyright # 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The use of adaptive control techniques has become a topic of increase interest in recent years as
adaptive control can be used to control plants whose parameters are unknown or uncertain [1].
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Adaptive control methods are generally divided into (i) direct and (ii) indirect methods. In the
first case the adjustment rules provide directly how to update the controller parameters; in the
indirect methods, the parameters of the unknown plant are estimated on-line, and the controller
parameters are calculated on the base of these estimates. In the context of control theory some
recent books and papers relevant to direct methods can be found [2,3]. In the context of
structural control several applications have been made by several researches as well [4–6].

When a direct reference model controller is used, it can be also applied to systems where the
details of the plant cannot be fully known a priori or are varying with time. Using this type of
algorithms without the knowledge of plant parameters, such that we assume zero initial
conditions for the controller gains, has become known as the minimal control synthesis (MCS)
approach [7]. Basing adaptive control schemes on a reference model enables the system to be
controlled to behave like the model itself. This type of approach [8,9] has been applied to a wide
range of systems including non-linear and chaotic systems [3,10]. As the approach is based
primarily on linear control theory being the reference model usually a linear one, the effect of
non-linearities and/or disturbances in non-linear systems is compensated for by the adaptive
nature of the controller. Very recently in the field of dynamic and seismic testing [11], the MCS
method was used in real-time substructuring, in order to minimize the error between
displacements imposed by the actuators on the substructure and displacements at the interfaces
of the numerical model [12,13]; and it was adopted for seismic continuous pseudo-dynamic
testing techniques [14].

Nowadays, controllers are implemented on digital computers, and therefore, the control
systems must be directly written in digital form and/or transformed from continuous time to
discrete time; moreover, if possible they must run in real-time and compensate for the influence
of time delay [15]. As far as discretization methods are concerned, different one-step one/multi-
stage real-time compatible algorithms are available, including the Euler method, the second-
and the third-order Runge–Kutta methods [16], where in short, an integration method is defined
to be real-time compatible, if the algorithm does not require the control signal u[k+1] at the
time tk+1 to compute the plant response x[k+1]. Also the zero-order-hold (ZOH) discrete
equivalent is a one-step one-stage real-time compatible algorithm which provides exact result at
sampling points for linear time invariant (LTI) systems and constant input in the time step [1, p. 42].

The selection of the best sample rate for a digital control system still represents a problem.
Generally, the performance of a digital controller improves with increasing sampling rate, but
costs may also increase with faster sampling; conversely, a slower sampling entails more time for
control calculations and so slower computers with smaller word sizes and cheap A/D converters
can be used. Thus generally, the slowest sample rate that meets all performance specifications is
sought.

Though numerous studies have dealt with the stability and robustness properties of adaptive
controllers [17,18], there is still a paucity of publications devoted to the clarification of specific
computational issues, such as accuracy, stability, frequency behaviour, optimal choice of the
sampling period and computational efficiency [19,20]. In detail, none of these aspects was
considered yet for the MCS algorithm. All together, they represent basic aspects of the
performance of the MCS algorithm and are the issues that the paper explores further by means
of analyses, simulations and tests.

The remainder of the paper is organized as follows. In Section 2 the main characteristics of
the basic MCS controller used in this paper are described. The relevant discrete control law and
the parameters usually chosen for the controller are introduced in Section 3. In Section 4, the
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local stability and accuracy analysis of the MCS controller is performed after the linearization of
the overall dynamical system around an operating point, which corresponds to the steady state
of the system. As the problem is particularly involved owing to the adaptation, conceptually
simple linear first-order systems are considered for the plant, the reference model and the proof-
of-concept tests. The properties of the MCS algorithm in the frequency domain are presented in
Section 5. Then, the MCS algorithm is investigated by means of simulations and tests in Section
6. Finally, the main conclusions are presented in Section 7 along with comments on future work.

2. THE MINIMAL CONTROL SYNTHESIS ALGORITHM

This section introduces the MCS controller exploited in this study. This method is compared
with a constant gain controller, developed assuming a linear system; conversely, the MCS is
characterized by an adaptive portion, conceived to compensate for system non-linearities.

2.1. Constant gain controller and Erzberger’s conditions

A generic non-linear plant can be described by the following equations:

’xðtÞ ¼ AxðtÞ þ BuðtÞ þ fNLðxðtÞ; tÞ ð1Þ

yðtÞ ¼ CxðtÞ ð2Þ

where A is the n� n matrix, B is the n�m input matrix, x(t) is the n-dimensional state vector,
u(t) is the m-dimensional control input vector and fNL(x(t), t) represents the non-linear and time
varying terms. y(t) and C are the output vector and plant output matrix, respectively, each
having appropriate dimensions. A linear system with the same number of states, inputs and
outputs is selected as reference model. The goal of the controller is for the dynamics of the
actual non-linear system to match those of the reference model. The reference model has the
following form:

’xmðtÞ ¼ AmxmðtÞ þ BmrðtÞ ð3Þ

ymðtÞ ¼ CxmðtÞ ð4Þ

where Am and Bm are n� n and n�m constant matrices, respectively, xm(t) is the reference
model state vector, r(t) is the m-dimensional reference input vector, and ym (t) is the reference
model output.

The error vector, xe(t), can be defined as

xeðtÞ ¼ xmðtÞ � xðtÞ ð5Þ

The desired result is for the controller to drive the steady-state error, such that limt!þ1xeðtÞ ¼ 0

when this limit exists. Using the state feedback control, whose control law reads:

uðtÞ¼ � KxðtÞþKrrðtÞ ð6Þ

By means of some mathematical manipulations, the error equation becomes:

’xeðtÞ ¼ AmxeðtÞþðAm�Aþ BKÞxðtÞ þ ðBm � BKrÞrðtÞ � fNLðx;tÞ ð7Þ
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If

fNL x; tð Þ ¼ 0 ð8Þ

Am � Aþ BK ¼ 0 ð9Þ

Bm � BKr ¼ 0 ð10Þ

are true, then (7) reduces to

’xe tð Þ ¼ Amxe tð Þ ð11Þ

This ensures that xe(t) ! 0 as t !1 , as long as Am is stable. Conditions (9) and (10) are used
to determine the constant gains K and Kr, i.e.

K ¼ BþðA� AmÞ

Kr ¼ BþBm ð12Þ

where the superscript plus sign (+) denotes the pseudo-inverse: B+=(BT B)�1 BT. It is assumed
that B has full rank. If the Erzberger’s conditions [21] for perfect model following are met, then
K and Kr guarantee (9) and (10).

If Erzberger’s conditions are not met, then the reference model needs to be redesigned.
Nonetheless, if both the plant and the reference model have Luenberger-type controllable
canonical structures, then Erzberger’s conditions will be met [22].

2.2. Model reference adaptive controllers

When the plant is time varying or non-linear, then the fNL vector cannot be neglected. In order
to compensate for the time-varying term, the model reference adaptive system (MRAS) theory
introduces a time varying controller:

uðtÞ¼ � ðK�dKðtÞÞxðtÞþðKrþdKrðtÞÞrðtÞ ð13Þ

where dK and dKr are time varying gain adjustments. Substituting the control law (13) in (1) and
after some manipulations, we get

’xeðtÞ¼AmxeðtÞþðAm�Aþ BKÞxðtÞ

þ ðBm�BKrÞrðtÞ�ðBðdKrrðtÞþdKxðtÞÞ þ fNLðx;tÞÞ ð14Þ

Again, K and Kr are selected so that the second and third terms in (14) are cancelled out. The
error equation now reduces to

’xeðtÞ ¼ AmxeðtÞ�BðdKrrðtÞ þ dKxðtÞÞ�fNLðx;tÞ ð15Þ

The values of dK and dKr must be selected to cancel the non-linear terms, but they cannot
explicitly solved because x(t) is unknown. A stability proof for these controllers has been
developed by using the hyperstability theory [22], which deals mainly with the stability of
systems that can be broken into a linear feed-forward loop, which meets the strictly positive real
condition, and a non-linear feedback loop that satisfies the Popov criterion for hyperstability.
This problem is solved through the proper selection of the output error matrix Ce, according to
the Lyapunov problem.
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Landau has presented a solution that yields expressions for dK and dKr [22]:

dK tð Þ ¼
Z t

0

u1ðtÞ dtþ u2 tð Þ

dKr tð Þ ¼
Z t

0

w1ðtÞ dtþ w2 tð Þ ð16Þ

A solution that satisfies the hyperstability condition for u1, u2, w1, and w2 is

u1ðtÞ ¼ ayeðtÞx
TðtÞ

u2 tð Þ ¼ byeðtÞx
TðtÞ

w1ðtÞ ¼ ayeðtÞr
TðtÞ

w2ðtÞ ¼ bye tð Þr
TðtÞ ð17Þ

where a and b are two positive constants, that must be selected before the solution of the above
equations, and the output error ye is

yeðtÞ ¼ CexeðtÞ ð18Þ

In order to ensure the stability of the closed loop system, Am must have eigenvalues in the left-
hand side of the complex plane. Am should also have a Luenberger-type controllable canonical
structure to ensure that Erzberger’s conditions are satisfied.

The adaptive controller presented above requires the knowledge of the dynamic
characteristics of the plant, A and B, which allows evaluating the constant values of K and
Kr. This kind of drawback can be eliminated by using the MCS algorithm which derives from
the MRAS formulation, but it assumes constant gains K and Kr equal to zero and unknown
plant parameters [7]. Figure 1 shows the block diagram of a standard MCS controller with its
essential components: the adaptive block; the input signal generation, u(t); the plant; together
with a parallel reference model; and a common reference signal, r(t). The only elements that are
needed to know are: the reference model parameters Am and Bm; the structure of the plant with
the degree of freedom and order and the sign of the coefficients of B, that usually is assumed
positive. Therefore, the control law becomes

uðtÞ¼ KðtÞxðtÞþKrðtÞrðtÞ ð19Þ

Figure 1. Block diagram of the classical minimal control synthesis algorithm.
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For the value of the output matrix Ce, Stoten [9] proposed a pragmatic solution for first-order
Ce ¼ ½4=ts� and second-order Ce ¼ ½4=ts 1� one degree-of-freedom systems (DoFs), where ts is
the time settling of the system, that induces an exact pole-zero cancellation.

3. DISCRETE CONTROL LAW

Since usually the controller is digitally implemented, the continuous controller developed in the
previous section must be discretized. This transformation is performed by the ZOH sampling
process which exhibits several features among which, exact solution at sampling points for LTI
systems and real-time compatibility. The discrete-time form of the reference model is defined by
the mapping

xm½kþ 1� ¼ Umxm½k� þ Cmr½k� ð20Þ

resulting in one-step one-stage method, where

Um ¼ eDtAm and Cm ¼
Z Dt

0

etAm dtBm ð21Þ

The sampling period or interval is Dt= tk+1�tk and the discrete time variable is the integer k.
The discrete control law equation for the MCS controller reads:

u½k�¼ K½k�x½k� þ Kr½k�r½k� ð22Þ

with the adaptive gains,

K½k� ¼ K½k� 1� þ bye½k�x
T½k� � sye½k� 1�xT½k� 1� ð23Þ

Kr½k� ¼ Kr½k� 1� þ bye½k�r
T½k� � sye½k� 1�rT½k� 1� ð24Þ

where s ¼ b� aDt and the output error reads

ye½k� ¼ Cexe½k� ¼ Ceðxm½k� � x½k�Þ ð25Þ

Obviously, for the assumptions of the MCS algorithm, the initial conditions read

K½�1� ¼ 0 ð26Þ

Kr½�1� ¼ 0 ð27Þ

In order to complete the characterization of the MCS controller, the eigenvalues of the reference
model, a and b from the adaptation equations, and Ce must be selected. The reference model
must be stable, i.e. the eigenvalue moduli must be less than one, and should be selected so as not
to exceed the system capability. The values of a and b are arbitrary positive numbers and are
selected by trial and error. However, an increase of b means a reduction of the settling time of
the adaptation, while a reduction of the b/a ratio improves the damping [21], Stoten proposed to
set the ratio b/a = 0.1. The final values of a and b are not critical, but they cannot be increased
indefinitely because that may magnify noise within the loop. The selection of the error vector
weighting matrix Ce is also relatively arbitrary and the selected values has been already
introduced in the previous section for the continuous time system.
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Due to the presence of the adaptive process, the MCS algorithm defines a non-linear
dynamical system; then, for simplicity, we will consider first-order linear systems both for the
plant and the reference model and we will perform the analysis on SDoF model equations
assuming that the plant exhibits the fastest dynamics in the system. As a result:

x½kþ 1� ¼ A0x½k� þ B0u½k� ð28Þ

xm½kþ 1� ¼ A0mxm½k� þ B0mr½k� ð29Þ

where, owing to the ZOH sampling A0 ¼ e�Dt=T ; B0 ¼ 1� e�Dt=T ; A0m ¼ e�Dt=Tm ; and B0m ¼
1� e�Dt=Tm ; T and Tm are, respectively, the plant and the reference model time constants; the
low-frequency gain for the plant and the model are assumed equal to 1; and Tm is related to the
approximate settling time ts by Tm ¼ ts=4: Furthermore, the control signal and the reference
input, that is assumed as a step function, read,

u½k� ¼ K ½k�x½k� þ Kr½k�r½k� ð30Þ

r½k� ¼
0; k50

1; k50

(
ð31Þ

respectively. In (30), we have implicitly assumed that the processing time d is negligible with
respect to Dt and therefore the control signal u[k] generated by the MCS algorithm is obtained
instantaneously and held constant over each time step. Furthermore,

ye½k� ¼ Cexe½k� ð32Þ

K ½k� ¼ K ½k� 1� þ bye½k�x½k� � ðb� aDtÞye½k� 1�x½k� 1� ð33Þ

Kr½k� ¼ Kr½k� 1� þ bye½k�r½k� � ðb� aDtÞye½k� 1�r½k� 1� ð34Þ

where Ce=4/ts according to the pragmatic solution proposed in Reference [9].

4. STABILITY AND ACCURACY ANALYSIS

In this section, the innovative stability and consistency analyses of the MCS controller
interpreted as a dynamical system are examined.

4.1. Amplification matrix and linearization

Combining Equations (28)–(30), (32)–(34) provides the multistep method

xe kþ 1½ �

x kþ 1½ �

K k½ �

Kr k½ �

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼ AIT

xe k½ �

x k½ �

K k� 1½ �

Kr k� 1½ �

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
þ BIT

xe k� 1½ �

x k� 1½ �

K k� 2½ �

Kr k� 2½ �

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
þ g ð35Þ

which can be interpreted as a second-degree iterative method [23, p. 486], where
matrices AIT, BIT and vector g are defined in Section A.1. This advancing scheme can be
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expressed as

xe½k�

x½k�

K ½k� 1�

Kr½k� 1�

xe½kþ 1�

x½kþ 1�

K ½k�

Kr½k�

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

¼
04 I4

BIT AIT

" #

xe½k� 1�

x½k� 1�

K ½k� 2�

Kr½k� 2�

xe½k�

x½k�

K ½k� 1�

Kr½k� 1�

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

þ

0

0

0

0

g

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð36Þ

or

xe½kþ 1�

xe½k�

x½kþ 1�

K ½k�

Kr½k�

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
¼ CIT

xe½k�

xe½k� 1�

x½k�

K ½k� 1�

Kr½k� 1�

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
þ

B
0

mr½k�

0

0

0

0

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð37Þ

where the amplification matrix CIT is reported in Section A.1 too. The system is non-linear due
to the presence of the adaptive mechanism; then, in order to reduce the complexity of the
analysis, it will be locally developed by linearizing the system in a neighbourhood of an
operating point, located at a steady-state condition for which limx!þ1xe½k� ! 0: The
linearization by physical insight consists of simply substituting the values of the operating
point, i.e. xe½k� 1� ¼ xe½k� ¼ 0; x k� 1½ � ¼ x k½ � ¼ 1 and r½k� 1� ¼ r½k� ¼ 1 or a constant, in the
amplification matrix CIT defined in (A4). One can note that the system linearization could be
obtained through a more rigorous linearization procedure based on a Taylor series expansion
about the operating point [24, p. 657]. However, this procedure needs of the evaluation of the
gains K[k] and Kr[k] at steady state which are unknown, consequently it can be performed only
by means of preliminary numerical simulations [25]. For this reason the proposed analysis by
physical insight is useful for a priori selection of the parameters and this will be proved by means
of examples and tests illustrated in Section 6.

From (37) we get

Kr½k� þ K ½k� ¼ 1 ð38Þ

where this relation of the Erzberger’s gain must be considered valid at steady state [22]. It can be
retrieved from (9) and (10) for first-order systems and implies that the ZOH sampling preserves
this important property at discrete times. In this condition, (37) reads,

y½kþ 1� ¼ CIT ; ss y½k� þ l½k� ð39Þ
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where

CIT ; ss ¼

A0m � 2B0bCe 2B0sCe A0m � A0 �B0 �B0

1 0 0 0 0

2B0bCe �2B0sCe A0 B0 B0

bCe �sCe 0 1 0

bCe �sCe 0 0 1

2
666666664

3
777777775

ð40Þ

y½k� ¼

xe½k�

xe½k� 1�

x½k�

K½k� 1�

Kr½k� 1�

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
; l½k� ¼

B0mr½k�

0

0

0

0

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð41Þ

As a result, the external stability of the MCS algorithm can be checked through the linearized
matrix CIT,ss. For the subsequent analysis, it will be convenient to analyse the system in non-
dimensional form by means of the following variables: Dt=Tm; b=ð4TmÞ; T=Tm; b=ða4TmÞ:

4.2. External and equilibrium stability

Herein, first we perform the external stability analysis of the MCS controller, which is concerned
with the boundedness of the response for bounded inputs [26]. In order to analyse this condition
we recurrently apply (39) starting from the initial instant. We obtain:

y½kþ 1� ¼ Ckþ1
IT ; ssy½0� þ

Xk
j¼0

C
k�j
IT ; ss l½j� ð42Þ

Moreover, by using the spectral decomposition of matrices and vectors and considering (31), we
obtain, if CIT, ss is diagonalizable

CIT ; ss ¼ UKU�1; y½0� ¼ Uc; l½j� ¼ Ucf 1
j ð43Þ

where U, K, c and cf represent matrices of eigenvector and eigenvalues of CIT, ss, and vectors of
the modal expansion of y[0] and l[j], respectively; thus, we end up with the modal expansions

y½kþ 1� ¼ Ulkþ1cþ
Xk
j¼0

Ulk�jcf 1j

¼
X5
s¼1

%csl
kþ1
s þ

Xk
j¼0

X5
s¼1

%cfsl
k�j
s ð44Þ

If all the eigenvalues of the matrix CIT, ss are inside the unit circle and being the unit step input
l[j] bounded, (42) is externally stable as shown in Section A.2. The expressions of ls are reported
in the same subsection and they characterize the steady state error of the MCS algorithm.
In detail, from the analysis of the eigenvectors with associated eigenvalues, l1 = 1 is a
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characteristic of the MCS algorithm which indicates neutral stability and implies that the system
gains wind up with noise due to presence of this eigenvalue [27]. Conversely, l2 = 0 corresponds
to the condition of (38), which is referred to the absolute stability at steady state. While l3 ¼
e�Dt=Tm51 for Dt > 0; l4,5 can be real or complex conjugates, lower or greater than 1, such that
the MCS algorithm may not be externally stable according to the combination of parameters.

If l[j]=0 in (42), the Lyapunov asymptotical and global stability can be studied analysing
again the eigenvalues of CIT, ss. The MCS algorithm can be stable in the sense of Lyapunov, as
the moduli of the eigenvalues of the matrix CIT, ss are less than 1; this implies that initial and
round-off errors do not artificially increase in the computation process. These stability notions
are very important in order to assure that perturbations to the MCS scheme damp out during
the computational process.

Figure 2. Eigenvalue moduli of the MCS controlled system for b=ða4TmÞ ¼ 0:1 and a unit step input:
(a) T=Tm ¼ 1; and (b) T=Tm ¼ 10:
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The eigenvalues moduli of l3 and l4,5 for the unit step input (31) and two ratios of T/Tm=1
and 10, are plotted in Figures 2(a) and (b), respectively. We assumed a time settling ts ¼ 4Tm ¼
1; b/a=0.1, as usually proposed for this algorithm, and, as a result, b= a4Tmð Þ ¼ 0:1; while all
remaining parameters can vary. Several observations can be made at this stage: (i) The MCS
algorithm is only conditionally stable, as the eigenvalue moduli can exceed one, and the stability
limit decreases for increasing values of b= 4Tmð Þ; when l4,5 are complex conjugates such a limit is
defined as

Dt
Tm

� �
l

¼
1

2a
þ

4

a
b

4Tm
ð45Þ

and does not depend on the T/Tm ratio, i.e. on the plant time constant. However, in practice the
time step Dt is limited by the ratio Dt=Tm

� �
N
¼ 0:5; corresponding to the Nyquist frequency 1/

(2Dt); and to accurately integrate the fastest component in the plant, one usually adopts
Dt=Tm

� �
¼ 0:1 or a smaller ratio. (ii) The algorithmic damping provided by the MCS algorithm

in order to reduce the error at steady state, i.e. for kc0, increases with b/(4Tm). (iii) The amount
of damping introduced by the algorithm on (42) decreases for an increase of the T/Tm ratio. We
must note that sometimes l4,5 become real and the stability limit reduces. This phenomenon is
typical of time integration, for which in order to maximize the high-frequency dissipation, the
principal roots shall remain complex conjugates as Dt/Tm increases [28]. The values of
b/(4Tm) for which l4,5 become real are reported in Section A.2 and, as expected, these values
depend on the plant characteristics. Rearranging (45), one can easily obtain the limit values of
b/(4Tm) as

b
4Tm

¼
b=ða4TmÞ

2ðDt=TmÞ � 8ðb=a4TmÞ
ð46Þ

In the sampling interval–gain (SG) space represented in Figure 3 for b/(a4Tm) = 0.1 and
a unit step input, (46) represents the stability limit of b/(4Tm) as function of Dt/Tm for
complex l4,5 eigenvalues which, as stated before, does not depend on the T/Tm ratio, viz.
on the plant. In this space the other bounds of the stability region are governed by the
maximum modulus of l4–l5, which depend on the T/Tm ratio; these bounds for different
T/Tm ratios are represented in Figure 3, too. Often in practice, the value Dt/Tm = 0.1 is
chosen for accuracy reasons [29, p. 449], so the gain space (GS) domain depicted in
Figure 4 represents the stability limit of b/(4Tm) as function of the parameter b/(a4Tm)
with Dt/Tm = 0.1. Similar considerations can be made as there is a limit defined by
complex eigenvalues independent of the plant. Again, the other bounds of the stability
region are obtained when l4,5 are real for different values of T/Tm. Even in this plot,
one can observe that the stability region increases with an increase of the T/Tm ratio.
We can graphically see that the usual choice of assuming b/(a4Tm) = 0.1 is a good
compromise between the adaptation mechanism speed and the stability limit, that is
reduced for values smaller than 0.025 and it is not improved for values larger than 0.1.
These stability domains may also be interpreted as an operational tool which allows
the optimal combination of Dt–b/a values, which are usually set by trial and errors, even if
the ratio T/Tm is unknown. The advantage of these spaces is that they permit to determine a
priori substantial information on the behaviour of the sampled-data control system without
knowing the plant.
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In the foregoing stability analysis, we have not deliberately plotted l1 (=1) and l2 (=0), but
only l3 and l4,5. Indeed, the response of the plant can be expressed as

x½kþ 1� ¼
X5
s¼1

%c3sl
kþ1
s þ

Xk
j¼0

X5
s¼1

%c3fsl
k�j
s ð47Þ

and if we concentrate only on the first addendum of the right-hand side for equilibrium stability,
we obtain that %c31 ¼ %c32 ¼ 0; therefore, only the remaining three coefficients and the

Figure 3. Asymptotic stability regions of the MCS algorithm in the sampling interval–gain space
for a unit step input and b=ða4TmÞ ¼ 0:1:

Figure 4. Asymptotic stability regions of the MCS algorithm in the gain space domain
for a unit step input and Dt=Tm ¼ 0:1:

O. S. BURSI, D. P. STOTEN AND L. VULCAN

Copyright # 2006 John Wiley & Sons, Ltd. Struct. Control Health Monit. (in press)

DOI: 10.1002/stc



corresponding eigenvalues control the stability properties of the MCS controlled system.
In this respect, Figure 5 shows the evolution of %c33l3; which involves the real eigenvalue l3 as a
function of Dt/Tm for the unit step input and T=Tm ¼ 10: One can observe that for the case
considered, %c33l3 is always less than 1 and the increase of %c33l3 for increasing values of b/(a4Tm)
is evident.

4.3. Accuracy

While for its definition a numerical algorithm is accurate when the computed numerical
response approaches as much as desired the exact response, in the context of reference model
controllers, we consider as exact the response of the reference model; at steady state as a result,

xe½k� ¼ xm½k� � x½k� for kc0 ð48Þ

will be interpreted as the error equation. Again, if we concentrate only on the first addendum of
(44), the plant response can be expressed as

x½kþ 1� ¼
X5
s¼1

%c3sl
kþ1
s ¼ expð�%x %oDtðkþ 1ÞÞðd1 cosð %oDtðkþ 1ÞÞ

þ d2 sinð %oDtðkþ 1ÞÞÞ þ
X3
s¼1

%c3sl
kþ1
s

ð49Þ

in which %x defines the algorithmic damping ratio, %o is the damped numerical frequency and di
are constants determined from the initial conditions. For complex and conjugates eigenvalues,
l4,5 can be represented as C� iD, then

%x ¼ �
ln C2 þD2
� �

2 %O
; %O ¼ arctan

D

C

� �
ð50Þ

where %O ¼ %oDt is the non-dimensional damped numerical frequency.

Figure 5. Evolution of %c33l3 for T=Tm ¼ 10; with a unit step input and b=ða4TmÞ ¼ 0:1:
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Both the algorithmic damping ratio and the damped frequency, which characterize the MCS
algorithm, are represented in Figure 6 for T=Tm ¼ 10 and unit step input. %x clearly increases
when b/(4Tm) increases and Dt/Tm reduces; conversely, %x decreases when T/Tm increases. With
regards to %O; a clear increase of the numerical damped frequency with b/(4Tm) is evident from
Figure 6(b).

If we consider at steady-state, x[k] = 1 and (38), from the first two equations of (37) we get,

xe kþ 1½ �

xe k½ �

( )
¼

E11; ss E12; ss

1 0

" #
xe½k�

xe½k� 1�

( )
¼ Ess

xe½k�

xe½k� 1�

( )
ð51Þ

Figure 6. Algorithmic properties for T=Tm ¼ 10 and unit step input: (a) damping ratio;
and (b) non-dimensional damped natural frequency.
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where

E11; ss ¼ e�Dt=Tm � 8 1� e�Dt=T
� � b

4Tm
ð52Þ

E12; ss ¼ 8 1�
aDt
b

� �
1� e�Dt=T
� � b

4Tm
ð53Þ

Analysing E11; ss and E12; ss we get,

E11; ss ¼ 1 for
Dt
Tm
! 0; E12; ss ¼ 0 for

Dt
Tm
! 0 ð54Þ

A numerical integrator is defined as consistent if it reduces to zero the error between the
numerical solution and the continuous-time solution when Dt approaches to zero. In the control
context, (54) entails that, defining the error as difference between reference and plant states, the
MCS algorithm is not consistent, as given two positive constants C1 and p, xe½kþ 1�j j >
C1Dtpþ1 with p > 0; where p is the so-called order of accuracy. In other words, the tracking
error (48) does not vanish for Dt! 0. This implies that the MCS algorithm discretized with the
ZOH sampling is endowed with a global non-zero optimal sampling period Dt/Tm which
depends on b/(4Tm). In this respect, the results of some numerical tests will be performed in the
next subsection.

The spectral radius r(Ess)=rE is plotted in Figure 7 for unit step input, T=Tm ¼ 1 and 10,
respectively. First, one can observe that rE can be greater than one and therefore, the MCS
algorithm is only conditionally stable. Moreover, rE does not vanish for Dt/Tm! 0; in addition,
an attentive reader can observe that below Dt=Tm

� �
N
¼ 0:5; rE decreases for increasing values of

b/(4Tm).

4.4. Performance of the MCS algorithm

In order to validate the analysis of the previous subsection and to study the performance of the
MCS algorithm we use a series of indicators in order to estimate the magnitude of the tracking
error.

In detail to quantify the tracking error, we define the mean square tracking error,

Xe :¼
1

k2 � k1

Xk2
k¼k1

x2e ½k� for k1Dt� ts ð55Þ

and the tracking error bound

Xe;sup :¼ sup xe½k�j j for kDt� 2ts ð56Þ

Relevant values provided by the application of the MCS algorithm are described in
Figures 8–10, for different combinations of the parameters and b/(a4Tm) =0.1. One may
observe how the evolution of |l4,5| of (40) with unit step input depicted in Figure 3 reflects well
the amount of errors. This agreement can be also clearly observed in Figures 8(a) and (b), which
report the tracking error bound Xe,sup for T=Tm ¼ 1 and T=Tm ¼ 10; respectively. As Xe;sup is
defined at t ¼ 2ts one can observe that also for this instant we have that the tracking error does
not vanish for Dt! 0, as predicted by (54). This trend is confirmed also for larger values of the
time in which we have sampled the tracking error, as depicted in Figure 9. From this figure one
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can see, that for small values of b/(4Tm), the behaviour of Xe,sup is more smooth at large DT=Tm;
this can be explained from (54) as E11; ss is closer to 1 for b/(4Tm)=0.1. Figure 10 shows the
mean square tracking error Xe defined in (55), assuming k2Dt ¼ 2ts; for T=Tm ¼ 10 and r½k� ¼ 1:
Similar considerations can be made as there is a correspondence between the tracking error and
the spectral radius of the amplification matrix CIT, ss.

5. FREQUENCY-DOMAIN ANALYSIS

After the study of the MCS algorithm in the time domain, by means of convergence and stability
analyses performed in Section 4, we turn our attention to frequency-domain analysis techniques.

Figure 7. Spectral radius of Ess for a unit step input: (a) T=Tm ¼ 1; and (b) T=Tm ¼ 10:
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In fact, time domain analyses do not fully highlight the performance of a control algorithm;
therefore we determine the steady-state response of the MCS algorithm to harmonic inputs in
order to characterize its input–output behaviour. We will mainly follow techniques developed in
Reference [30] for linear and non-linear systems.

5.1. Transfer and frequency response function vectors

Starting from the recurrence form of the MCS algorithm

y½kþ 1� ¼ CIT ; ssy½k� þ l½k� ð57Þ

Figure 8. Convergence of Xe, sup for a unit step input: (a) T=Tm ¼ 1; and (b) T=Tm ¼ 10:
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and taking the one-sided z-transform (Z) of both sides of (57) one gets:

zY½z� � zY0 ¼ CIT ; ssY½z� þ B
0

m½R½z�; 0; 0; 0; 0�
T ð58Þ

Figure 9. Convergence of Xe, sup defined at different times t for T=Tm ¼ 1 and a unit step input.

Figure 10. Convergence of Xe at t ¼ ts for T=Tm and a unit step input.
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where Y[z]=Z[y[k]] and R[z]=Z[r[k]]. Assuming zero initial conditions or that the transient part
decays if the overall system is stable, (58) leads to the algorithmic transfer function vector:

G½z� ¼
Y½z�
R½z�
¼ ðzI5 � CIT ; ssÞ

�1B0m 1; 0; 0; 0; 0½ �T¼ ½Gxe1 ½z�;Gxe ½z�;Gx½z�;GK ½z�;GKr
½z��T ð59Þ

in which, for instance Gx½z� relates the plant response and the input and can be interpreted as a
receptance. Moreover, one can rewrite (59) as

G½z� ¼
Y½z�
R½z�
¼

adj zI5 � CIT ; ss

� �
zI5 � CIT ; ss

�� �� B0m 1; 0; 0; 0; 0½ �T ð60Þ

where adj(o) represents the adjoint operator and |o| the determinant. We observe that the poles
of G[z] are equal to the roots of zI5 � CIT ; ss

�� ��; i.e. the eigenvalues of the CIT, ss matrix. It is
evident that external stability requires that the poles pi of CIT, ss are such that |pi|41.

When the discrete demand is real and harmonic, i.e. r½k� ¼ 1
2
ðRej *okDt þ R�e�j *okDtÞ; the steady-

state system response can be in turn assumed real and harmonic, i.e.

x½k� ¼ 1
2
ðXej *okDt þ X�e�j *okDtÞ ð61Þ

where R, R*, X and X*2C. Introducing such condition in (58), one obtains

G ej *oDt
� 	

¼ Gxe1 ej *oDt
� 	

;Gxe ej *oDt
� 	

;Gx ej *oDt
� 	

;GK ej *oDt
� 	

;GKr
ej *oDt
� 	� 	T

ð62Þ

where G½ej *oDt� is the vector of the algorithmic frequency response functions (AFRF) and
*O ¼ *oDt is the non-dimensional angular frequency of the harmonic input demand r[k]. Some
remarks have to be made at this point: (i) thanks to the form of CIT in (A4), the linearization
through physical insight does not require any assumption at steady state both of errors and of
gains; (ii) as the Taylor series expansion of r[k] is

r½k� ¼ 1
2 Rej *okDt þ R�e�j *okDt
� �

¼ 1
2 ðRþ R�Þ þ j 12 R� R�

� �
*okDt

� 1
4
ðRþ R�Þð *okDtÞ2 � j 1

12
ðR� R�Þð *okDtÞ3 þOðð *okDtÞ4Þ ð63Þ

and R ¼ R� in this case, the evaluation of r½k� in CIT, ss defined in (40) is approximate as we are
considering only the first term in the rhs of (63); (iii) consideration (ii) holds for x½k� too; (iv)
G½ej *oDt� provides us information on the response of the sample data MCS controlled system
when we select a single-frequency continuous time input r½t� ¼ 1

2ðRe
j *ot þ R�e�j *otÞ; sample r[t] and

apply r[t] to the system. In this sense G½ej *oDt� may be view as the AFRF of the sampled-data
MCS algorithm.

5.2. Applications to the MCS algorithm

In order to characterize the behaviour of the MCS algorithm, we consider the following
quantities Gx½ej *oDt� and Gxe ½e

j *oDt� in terms of gain and phase Bode plots as a function of Dt=Tm

and *O: The algorithmic Bode gain plot of Gx½ej *oDt� is illustrated in Figure 11(a), while the phase,
arg Gx½ej *oDt�; is illustrated in Figure 11(b), for b=4Tm ¼ 1 and T=Tm ¼ 10; the corresponding
quantities for b=4Tm ¼ 10 are reported in Figures 12(a) and (b), respectively. Several comments
can be made on these representations. First, the response to a harmonic excitation (63) cannot
be solved beyond the Nyquist frequency *ON ¼ *oNDt ¼ p and this can be clearly observed both
in Figures 11 and 12; moreover, we cannot have information on the annihilation capabilities of
the MCS algorithm for Dt/Tmc0, owing to the restriction of the Nyquist limit. Second, the
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Bode magnitude decreases when *O increases and it increases when Dt/Tm increases; the first
trend is wanted as high-frequency forcing components, for instance those caused by noise, can
be damped out and this reflects the transfer function properties of the ZOH sampling [29,
p. 155]; the second characteristic is unwanted as any integrated high-frequency component, for
instance generated by the finite element method or due to stiff problem integration, present in
the system is not attenuated when Dt is large or Tm is small. As far as the phase is concerned, we
can observe from Figures 11(b) and 12(b) how it changes as a function of the b/(4Tm) ratio;

Figure 11. Plant response for b=4Tm ¼ 1; T=Tm ¼ 10 and unit step input: (a) gain Bode plot;
and (b) phase Bode plot.
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in addition the MCS algorithm changes from in-phase to out-of-phase with the forcing term as a
function of *O:

The algorithmic gain Bode plot of Gxe ½e
j *oDt�; i.e. the transfer function of the tracking error, is

illustrated in Figure 13(a), while the corresponding phase, arg Gxe ½e
j *oDt�; is depicted in Figure

13(b). One may observe that the gain does not reduce significantly for high values of *O; and in
addition for very small values *O; the gain does not diminish for small values of Dt/Tm. Again,

Figure 12. Plant response for b=4Tm ¼ 10; T=Tm ¼ 10 and unit step input: (a) gain Bode plot;
and (b) phase Bode plot.
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one can see from Figure 13(b), that the MCS algorithm is out-of-phase with the forcing term for
large values of *O:

6. REPRESENTATIVE NUMERICAL SIMULATIONS AND TESTS

In order to highlight the performances of the MCS algorithm and confirm the analytical
findings of the previous sections, numerical simulations provided by means of the discrete

Figure 13. Error response for b=4Tm ¼ 10; T=Tm ¼ 10 and unit step input: (a) gain Bode plot;
and (b) phase Bode plot.
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implementation of the MCS algorithm in SIMULINK [31] was performed. Moreover, some
simulations will include a high-frequency noise will be described in order to confirm the validity
of frequency-domain analyses. A first-order plant is emulated through a numerical or an
electronic lag characterized by the following transfer function:

G½s� ¼
1

1þ Ts
ð64Þ

where T is the plant time constant. In order to perform experimental tests, the DS1104 R&D
Controller board was used [32].

6.1. Numerical simulations

The simulations presented herein intend to validate some of analytical findings presented in
Section 4.2. In fact, by means of the SG space depicted in Figure 3, it is possible to make a
preliminary selection of the adaptive weight parameters b and a. Assuming the value
Dt=Tm ¼ 0:1 for accuracy reasons [29, p. 449], the ratio b=a ¼ 0:1 as proposed by Stoten [9] and
a plant time constant T=Tm ¼ 1; from the SG domain of Figure 3 we can choose a stable
parameter b/(4Tm)=2. From the same plot we can note that the assumption of b=ð4TmÞ ¼ 4 will
lead to system instability. The numerical simulations of this system, assuming a reference model
time constant Tm ¼ 0:25 s with the two different values of b=ð4TmÞ is depicted in Figure 14. The
system instability with b=ð4TmÞ ¼ 4 is evident.

With the same reasoning, the parameter selection through the GS domain of Figure 4 is
introduced. Assuming the value Dt=Tm ¼ 0:1; b=ð4TmÞ ¼ 25 and a plant time constant
T ¼ 10Tm; from the GS domain of Figure 4 we can choose a stable ratio b=ða4TmÞ ¼ 0:1
with ts ¼ 4Tm ¼ 1 s; the same value is suggested by Stoten [9]. From the same plot we can note
that the assumption of b=ða4TmÞ ¼ 0:01 will lead to system instability. As confirmation of these
findings, the numerical simulations of this system, with reference model time constant
Tm ¼ 0:25 s; with the two different b=a ratios is depicted in Figure 15. Even in this case, the
system instability with b=a ¼ 0:01 is quite evident.

The effect of a high-frequency noise applied to the feedback loop of the controller is analysed
herein, by means of some numerical simulations and the frequency-domain analysis proposed in
Section 5. The evolution of a MCS controlled system is depicted in Figure 16 assuming the value
Dt=Tm ¼ 0:02; b=Tm ¼ 1; Tm ¼ 0:25 s; b=a ¼ 0:1 and plant time constant T ¼ 2:5 s: The system
response depicted in Figure 16(a) is affected by a noise in the feedback loop with a circular
frequency 232.4 rad/s; while the system response represented in Figure 16(b) is characterized by
a noise with a circular frequency of 20.1 rad/s. The second system presents oscillations in the
transient and in the steady-state regimes more marked than those of the first system. This can be
deduced also from the analysis of the gain Bode plot of Figure 11, where the gain Gx½ej *oDt� of the
system with *o ¼ 20:1 rad/s ( *O ¼ 0:1) and Dt=Tm ¼ 0:02 is higher than the system with
*o ¼ 232:4 rad/s ( *O ¼ 1:16) and Dt=Tm ¼ 0:02: For these reasons we confirm the capacity of the
MCS algorithm with the ZOH sampling to damp out high frequency forcing components.

Figures 17(a) and (b) show the response of the controlled system when Dt=Tm ¼ 0:4 and
Dt=Tm ¼ 0:04; respectively, b=ð4 TmÞ ¼ 1; T=Tm ¼ 1 and the unit step input are assumed.
One may observe that the error xe is reduced for the case Dt=Tm ¼ 0:04: This is confirmed from
the values depicted in Figure 6(a) which shows an increase of numerical damping %x for this
particular condition. Moreover, one can clearly observe from Figure 17(b) that the damping
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effect which reduces the tracking error is generated by the negative value of the feedback gain K
in (30).

6.2. Tests

The experimental tests presented here intend to show the limited capability of the MCS
algorithm with the ZOH sampling to deal with unresolved high frequencies without any specific
device or filter. In fact, we have seen from Figures 13 and 16, the limited capability of the MCS

Figure 14. Evolution of the MCS controlled system for T=Tm ¼ 1; Dt=Tm ¼ 0:1; b=ða4TmÞ ¼ 0:1
and a unit step input: (a) b=ð4TmÞ ¼ 2; and (b) b=ð4TmÞ ¼ 4:
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algorithm to damp out high frequencies for high Dt=Tm ratios. In this respect, we considered a
system with the following parameters: Dt=Tm ¼ 0:5; b=ð4TmÞ ¼ 10; T=Tm ¼ 9:98; step input
r½k� ¼ 0:1 and b=ða4TmÞ ¼ 0:1: The relevant results depicted in Figure 18(a) show a favourable
response of the system, even if it is sampled at the Nyquist frequency. The next simulation is
conducted with b=ð4TmÞ ¼ 100 and all other parameters unvaried. The corresponding results are
depicted in Figure 18(b) and show a blow-up of the system due to unresolved frequencies. Note
that the corresponding simulation conducted in a numerical environment, without disturbances,
does not exhibit any problem.

Figure 15. Evolution of the MCS controlled system for T=Tm ¼ 10; Dt=Tm ¼ 0:1; b=ð4TmÞ ¼ 25
and unit step input: (a) b=a ¼ 0:1; and (b) b=a ¼ 0:01:
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7. CONCLUSIONS AND PERSPECTIVES

This paper has dealt with the convergence and steady-state analysis of a discrete first-order MCS
controller discretized with the one-step one-stage ZOH sampling. It was assumed that the plant
to be controlled is a first-order system and the communication between plant and controller is
zero-order sampled. The control signal is generated from the demand and the feedback from the
plant instantaneously, thus resulting in no computational delay. The analysis performed here is
for the case where the demand is a unit step input or fractions of it.

This analysis allowed two gain space domains to be determined in order to define the region
of local stability. Moreover, the accuracy analysis has provided insight into the range of

Figure 16. Evolution of the MCS controlled system for T=Tm ¼ 10; Dt=Tm ¼ 0:02; b=ð4TmÞ ¼ 1; a=b ¼ 10
and unit step input: (a) high-frequency noise *o ¼ 232:4 rad/s; high-frequency noise *o ¼ 20:1 rad/s.
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Figure 17. Evolution of the MCS controlled system for b=ð4TmÞ ¼ 1; T=Tm ¼ 10 and unit step input:
(a) Dt=Tm ¼ 0:4; and (b) Dt=Tm ¼ 0:04:
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Figure 18. Evolution of the MCS algorithm with the DS1104 R&D Controller Board for T=Tm ¼ 9:98;
Dt=Tm ¼ 0:5; step input r½k� ¼ 0:1 and b=ða4TmÞ ¼ 0:1: (a) b=ð4TmÞ ¼ 10; and (b) b/(4Tm)=100.
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adaptive control weightings that results in optimal performance of the MCS controller and also
highlights a possible approach to a priori selection of the time step and adaptive weighting
values. Moreover, the frequency-domain analysis has shown the limited capability of the MCS
algorithm with the ZOH sampling to filter out high frequencies for large values of the sampling
interval or small time constants of the reference model. Numerical simulations and experimental
tests confirm the main analysis conclusions, also in presence of noise and disturbance.

Further, the analyses were performed assuming no computational delay and the introduction
of a full-sample period delay, which represents the worst case, should be investigated. Finally
the analysis suggested in this paper should be performed on the error-based version of the MCS
algorithm with integral action [9] considering more general inputs.

APPENDIX A

A.1. Amplification matrix

Matrices AIT, BIT and vector g read

AIT ¼

A0m � B0bCeðx½k�2 þ r½k�2Þ A0m � A0 �B0x½k� �B
0
r½k�

B0bCeðx½k�2 þ r½k�2Þ A0 B0x½k� B
0
r k½ �

bx½k�Ce 0 1 0

br½k�Ce 0 0 1

2
666664

3
777775 ðA1Þ

BIT ¼

B0sCe r½k� 1�r½k� þ x½k� 1�x½k�ð Þ 0 0 0

�B0sCe r½k� 1�r½k� þ x½k� 1�x½k�ð Þ 0 0 0

�sx½k� 1�Ce 0 0 0

�sr½k� 1�Ce 0 0 0

2
666664

3
777775 ðA2Þ

g ¼

B0mr½k�

0

0

0

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ðA3Þ

Moreover, the amplification matrix CIT reads

CIT ¼

A0m � B0bCeðx½k�2 þ r½k�2Þ B0sCe r½k� 1�r½k� þ x½k� 1�x½k�ð Þ A0m � A0 �B0x½k� �B0r½k�

1 0 0 0 0

B0bCeðx½k�2 þ r½k�2Þ �B0sCe r½k� 1�r½k� þ x½k� 1�x½k�ð Þ A0 B0x½k� B0r½k�

bx½k�Ce �sx½k� 1�Ce 0 1 0

br½k�Ce �sr½k� 1�Ce 0 0 1

2
666666664

3
777777775
ðA4Þ
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A.2. External stability and eigenvalue bounds

In this subsection, we prove the external stability of (42). In detail, the stability of the overall
system can be proved as follows:

y kþ 1½ �j jj j2 ¼ UKkþ1U�1y 0½ � þ
Xk
j¼0

UKk�jcf 1
j

�����
�����

�����
�����
2

4 UKkþ1U�1y 0½ �
�� ���� ��

2
þ
Xk
j¼0

UKk�jcf 1
j

�����
�����

�����
�����
2

4 Uj jj j2 Kkþ1
�� ���� ��

2
U�1y 0½ �
�� ���� ��

2
þ
Xk
j¼0

Uj jj j2 Kk�j
�� ���� ��

2
cf 1

j
�� ���� ��

2

4 Uj jj j2r Kð Þkþ1 U�1y 0½ �
�� ���� ��

2
þ
Xk
j¼0

Uj jj j2r Kð Þk�j cf 1
j

�� ���� ��
2

4 Uj jj j21 U�1y 0½ �
�� ���� ��

2
þ
Xk
j¼0

Uj jj j21 cf 1
j

�� ���� ��
2

ðA5Þ

where the spectral norm of K reads jjKjj2 ¼ supðjjKxjjÞ=jxj; x=0 and rðKÞ ¼ jjKjj2 when K is a
5� 5 matrix.

The expressions of ls of CIT, ss defined in (40) in terms of the non-dimensional parameters
defined in Section 4.1 read,

l1 ¼ 1

l2 ¼ 0

l3 ¼ e�Dt=Tm

l4 ¼
1

2
1þ e�Dt=T �

2b 1� e�Dt=T
� �

Tm
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 b� aDtð Þ 1� e�Dt=T

� �
Tm

� 4e�Dt=T þ 1�
2b
Tm
þ

e�Dt=T 2bþ Tmð Þ
Tm

� �2
s0

@
1
A ðA6Þ

l5 ¼
1

2
1þ e�Dt=T �

2b 1� e�Dt=T
� �

Tm
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 b� aDtð Þ 1� e�Dt=T

� �
Tm

� 4e�Dt=T þ 1�
2b
Tm
þ

e�Dt=T 2bþ Tmð Þ
Tm

� �2
s0

@
1
A

Finally, the lower and upper bound of b/(4Tm) which entail complex conjugates values for l4
and l5 are reported below

bL

4Tm
¼

1� eDt=T þ 2ðaDt=bÞeDt=T � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaDt=bÞeDt=T 1� eDt=T þ ðaDt=bÞeDt=T

� �q
8ðeDt=T � 1Þ

bU

4Tm
¼

1� eDt=T þ 2ðaDt=bÞeDt=T þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaDt=bÞeDt=T 1� eDt=T þ ðaDt=bÞeDt=T

� �q
8ðeDt=T � 1Þ

ðA7Þ
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