107 research outputs found

    Kauri Tree-Ring Stable Isotopes Reveal a Centennial Climate Downturn Following the Antarctic Cold Reversal in New Zealand

    Get PDF
    The dynamics of the Late Glacial have been demonstrated by numerous records from the Northern Hemisphere and far fewer from the Southern Hemisphere (SH). SH paleoclimate records reveal a general warming trend, interrupted by a deglaciation pause Antarctic Cold Reversal (ACR; ∼14,700–13,000 cal BP). Here, we present decadal tree-ring stable isotope chronologies (δ18O, δ13C) from New Zealand (NZ) subfossil kauri trees (n = 6) covering the post-ACR millennium from 13,020 to 11,850 cal BP. We find a distinct, simultaneous downturn (∼12,625–12,375 cal BP) in all tree-ring proxies paralleling regional tree growth declines, suggesting a widespread climate deterioration. This downturn was characterized by sustained high precipitation, low temperatures, and high relative humidity in NZ with incoming weather fronts from the South Ocean. Despite these promising results, questions remain about what drove the Kauri Downturn and how the hydroclimatic conditions were altered during this time period

    Abrupt climatic events during the last glacial-interglacial transition in Alaska

    Get PDF
    Evidence is mounting that abrupt climatic shifts occurred during the last glacial-interglacial transition (LGIT) in the North Atlantic and other regions. However, few high-resolution climatic records of the LGIT exist from the high latitudes of the North Pacific rim. We analyzed lake sediments from southwestern Alaska for biogenic silica, organic carbon, organic nitrogen, diatom assemblages, and compound-specific hydrogen isotopes. Results reveal climatic changes coincident with the Younger Dryas, Intra-Allerod Cold Period, and Pre-Boreal Oscillation. However, major discrepancies exist in the paleoclimate patterns of the Bolling-Allerod interstadial between our data and the GISP2 18O record from Greenland, and causes are uncertain. These data suggest that the North Pacific and North Atlantic experienced similar reversals during climatic warming of the LGIT but that the Bolling-Allerod cooling trend in the GISP2 18O record is probably not a hemispheric or global pattern

    Hydrology in the Sea of Marmara during the last 23 ka : implications for timing of Black Sea connections and sapropel deposition

    Get PDF
    Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 25 (2010): PA1205, doi:10.1029/2009PA001735.Sediments deposited under lacustrine and marine conditions in the Sea of Marmara hold a Late Quaternary record for water exchange between the Black Sea and the Mediterranean Sea. Here we report a multiproxy data set based on oxygen and strontium isotope results obtained from carbonate shells, major and trace elements, and specific organic biomarker measurements, as well as a micropaleontological study from a 14C-dated sediment core retrieved from the Sea of Marmara. Pronounced changes occurred in δ18O and 87Sr/86Sr values at the fresh and marine water transition, providing additional information in relation to micropaleontological data. Organic biomarker concentrations documented the marine origin of the sapropelic layer while changes in n-alkane concentrations clearly indicated an enhanced contribution for organic matter of terrestrial origin before and after the event. When compared with the Black Sea record, the results suggest that the Black Sea was outflowing to the Sea of Marmara from the Last Glacial Maximum until the warmer Bølling-Allerød. The first marine incursion in the Sea of Marmara occurred at 14.7 cal ka B.P. However, salinification of the basin was gradual, indicating that Black Sea freshwaters were still contributing to the Marmara seawater budget. After the Younger Dryas (which is associated with a high input of organic matter of terrestrial origin) both basins were disconnected, resulting in a salinity increase in the Sea of Marmara. The deposition of organic-rich sapropel that followed was mainly related to enhanced primary productivity characterized by a reorganization of the phytoplankton population.We acknowledge support from INSU and the French Polar Institute IPEV
    corecore