5 research outputs found

    Is the tier-1 effect assessment for herbicides protective for aquatic algae and vascular plant communities?

    No full text
    In the aquatic tier-1 effect assessment for plant protection products with an herbicidal mode of action in Europe, it is usually algae and/or vascular plants that determine the environmental risks. This tier includes tests with at least 2 algae and 1 macrophyte (Lemna). Although such tests are considered to be of a chronic nature (based on the duration of the test in relation to the life cycle of the organism), the measurement endpoints derived from the laboratory tests with plants (including algae) and used in the first-tier effect assessment for herbicides are acute effect concentrations affecting 50% of the test organisms (EC50 values) and not no-observed-effect concentrations (NOECs) or effect concentrations affecting 10% of the test organisms (EC10) values. Other European legislative frameworks (e.g., the Water Framework Directive) use EC10 values. The present study contributes to a validation of the tiered herbicide risk assessment approach by comparing the standard first-tier effect assessment with results of microcosm and mesocosm studies. We evaluated EC50 and EC10 values for standard test algae and macrophytes based on either the growth rate endpoint (ErC50) or the lowest available endpoint for growth rate or biomass/yield (Er/EyC50). These values were compared with the regulatory acceptable concentrations for the threshold option as derived from microcosm and mesocosm studies. For these studies, protection is maintained if growth rate is taken as the regulatory endpoint instead of the lowest value of either growth rate or biomass/yield in conjunction with the standard assessment factor of 10. Based on a limited data set of 14 herbicides, we did not identify a need to change the current practice. Environ Toxicol Chem 2018;37:175–183

    Effects of the herbicide metsulfuron-methyl on a plant community, including seed germination success in the F1 generation

    Get PDF
    A field trial was set up to simulate a field margin environment to analyze sub-lethal effects of the herbicide metsulfuron-methyl on several endpoints of non-target terrestrial plants (NTTPs). Both vegetative and reproductive endpoints were evaluated. The experiment was conducted in an experimentally established field strip with sown species. The treatments consisted of five dosages and a control: 0, 0.0097, 0.0193, 0.058, 0.174, and 0.348 gram active ingredient per hectare (g a.i./ha). The plant cover, number of (flowering) individuals per species and fruit collection were performed and estimated weekly for a period of 4 months. At the end of the growing season, the total dry biomass per species was obtained and the collected fruits were weighed, counted, and sieved to obtain the seeds. The seeds were counted and weighed as well, before they were used in a germination experiment to test the seed emergence of the F1 generation. The herbicide only affected the biomass of Matricaria recutita at the treatment levels tested (0.058 g a.i./ha and higher). Field dosages of 0.174 and 0.348 g a.i./ha differed significantly in the endpoint "plant cover" compared to lower dosages and controls. The F1 generations of Sinapis alba, Centaurea cyanus, and Phacelia tanacetifolia were particularly affected at field dosages of 0.0193 g a.i./ha and higher, showing significantly lower seed germination rates. This would imply that spray drift of metsulfuron-methyl might lead to shifts in species compositions and succession in vegetation in off-crop areas adjacent to arable fields. Conducting germination experiments is necessary to investigate a herbicide's effect on the full life cycle of plants

    Exposure and effects of sediment-spiked fludioxonil on macroinvertebrates and zooplankton in outdoor aquatic microcosms

    No full text
    Information from effects of pesticides in sediments at an ecosystem level, to validate current and proposed risk assessment procedures, is scarce. A sediment-spiked outdoor freshwater microcosm experiment was conducted with fludioxonil (lipophilic, non-systemic fungicide) to study exposure dynamics and treatment-related responses of benthic and pelagic macroinvertebrates and zooplankton. Besides blank control and solvent control systems the experiment had six different treatment levels (1.7–614 mg a.s./kg dry sediment) based around the reported 28-d No Observed Effect Concentration (NOEC) for Chironomus riparius (40 mg a.s./kg dry sediment). Twelve systems were available per treatment of which four were sacrificed on each of days 28, 56 and 84 after microcosm construction. Fludioxonil persisted in the sediment and mean measured concentrations were 53–82% of the initial concentration after 84 days. The dissipation rate increased with the treatment level. Also exposure concentrations in overlying water were long-term, with highest concentrations 28 days after initiation of the experiment. Sediment-dwelling Oligochaeta and pelagic Rotifera and Cladocera showed the most pronounced treatment-related declines. The most sensitive sediment-dwelling oligochaete was Dero digitata (population NOEC 14.2 mg a.s./kg dry sediment). The same NOEC was calculated for the sediment-dwelling macroinvertebrate community. The most sensitive zooplankton species was the cladoceran Diaphanosoma brachyurum (NOEC of 1.6 μg a.s./L in overlying water corresponding to 5.0 mg a.s./kg dry sediment). At the two highest treatments several rotifer taxa showed a pronounced decrease, while the zooplankton community-level NOEC was 5.6 μg a.s./L (corresponding to 14.2 mg a.s./kg dry sediment). Zooplankton taxa calanoid Copepoda and Daphnia gr. longispina showed a pronounced treatment-related increase (indirect effects). Consequently, an assessment factor of 10 to the chronic laboratory NOECs of Chironomus riparius (sediment) and Daphnia magna (water) results in a regulatory acceptable concentration that is sufficiently protective for both the sediment-dwelling and pelagic organisms in the microcosms.</p
    corecore