72 research outputs found

    Risk Assessment of Nanomaterials Toxicity

    Get PDF

    Micropatterning neuronal networks

    No full text
    Spatially organised neuronal networks have wide reaching applications, including fundamental research, toxicology testing, pharmaceutical screening and the realisation of neuronal implant interfaces. Despite the large number of methods catalogued in the literature there remains the need to identify a method that delivers high pattern compliance, long-term stability and is widely accessible to neuroscientists. In this comparative study, aminated (polylysine/polyornithine and aminosilanes) and cytophobic (poly(ethylene glycol) (PEG) and methylated) material contrasts were evaluated. Backfilling plasma stencilled PEGylated substrates with polylysine does not produce good material contrasts, whereas polylysine patterned on methylated substrates becomes mobilised by agents in the cell culture media which results in rapid pattern decay. Aminosilanes, polylysine substitutes, are prone to hydrolysis and the chemistries prove challenging to master. Instead, the stable coupling between polylysine and PLL-g-PEG can be exploited: Microcontact printing polylysine onto a PLL-g-PEG coated glass substrate provides a simple means to produce microstructured networks of primary neurons that have superior pattern compliance during long term (>1 month) cultur

    Філософсько-правові проблеми реалізації права на працю

    Get PDF
    Розкривається зміст категорії «праця». Досліджуються філософсько-правові про­блеми у сфері здійснення права на працю.Раскрывается содержание категории «труд». Исследуются философско-правовые проблемы в сфере осуществления права на труд.In the article the content of the category «labour» is revealed. The philosophical and legal problems in the field of realization of the right to work are being researched

    Effects of manganese exposure on olfactory functions in teenagers: A pilot study

    Get PDF
    Long-term exposure to environmental manganese (Mn) affects not only attention and neuromotor functions but also olfactory functions of a pre-adolescent local population who have spent their whole life span in contaminated areas. In order to investigate the effect of such exposure at the level of the central nervous system we set up a pilot fMRI experiment pointing at differences of brain activities between a non-exposed population (nine subjects) and an exposed one (three subjects). We also measured the volume of the olfactory bulb as well as the identification of standard olfactory stimuli. Our results suggest that young subjects exposed to Mn exhibit a reduction of BOLD signal, subjective odor sensitivity and olfactory bulb volume. Moreover a region of interest SPM analysis showed a specifically reduced response of the limbic system in relation to Mn exposure, suggesting an alteration of the brain network dealing with emotional responses

    Neurodevelopmental basis of health and disease: the 14th meeting of the International Neurotoxicology Association

    Get PDF
    Biological events in early life are key determinants of health status in adult and aging stages. The evidence for this is compelling in neurotoxicology (Grandjean and Landrigan, 2006). The complexity of the developing nervous system creates multiple targets for the adverse structural, functional and behavioral effects of toxic chemicals: from overt neuroteratogenia to subtle influences on the functional decline occur during aging. Minamata disease is the best known example of dramatic alterations in nervous system structure and function as a result of chemical exposure during development. However, the impact of low dose exposure of several other toxic compounds on endpoints such as adolescent emotional growth, cognitive function, sensory deficits or risk of suffering neurodegenerative diseases (Grandjean and Landrigan, 2006; Cannon and Greenamyre, 2011; Bellinger, 2013) is a field of knowledge that still contains more questions than answers. The effects of toxicants on later life become more and more important as life expectancy increases. In addition to understanding the effects and underlying mechanisms, we want to predict the adverse effects on the developing nervous and sensory systems. This constitutes a major challenge for neurotoxicity testing. Facing these questions, the International Neurotoxicology Association (INA) selected the theme ''Neurodevelopmental Basis of Health and Disease'' for its 14th Meeting, held in Egmond aan Zee, The Netherlands, June 2013. Detailed information on the meeting, including lists of symposia, members of the organizing and scientific committees, awardees, sponsors, and exhibitors are included elsewhere in this Special Issue (De Groot et al., 2014)

    Digital research data: from analysis of existing standards to a scientific foundation for a modular metadata schema in nanosafety

    Get PDF
    Background: Assessing the safety of engineered nanomaterials (ENMs) is an interdisciplinary and complex process producing huge amounts of information and data. To make such data and metadata reusable for researchers, manufacturers, and regulatory authorities, there is an urgent need to record and provide this information in a structured, harmonized, and digitized way. Results: This study aimed to identify appropriate description standards and quality criteria for the special use in nanosafety. There are many existing standards and guidelines designed for collecting data and metadata, ranging from regulatory guidelines to specific databases. Most of them are incomplete or not specifically designed for ENM research. However, by merging the content of several existing standards and guidelines, a basic catalogue of descriptive information and quality criteria was generated. In an iterative process, our interdisciplinary team identified deficits and added missing information into a comprehensive schema. Subsequently, this overview was externally evaluated by a panel of experts during a workshop. This whole process resulted in a minimum information table (MIT), specifying necessary minimum information to be provided along with experimental results on effects of ENMs in the biological context in a flexible and modular manner. The MIT is divided into six modules: general information, material information, biological model information, exposure information, endpoint read out information and analysis and statistics. These modules are further partitioned into module subdivisions serving to include more detailed information. A comparison with existing ontologies, which also aim to electronically collect data and metadata on nanosafety studies, showed that the newly developed MIT exhibits a higher level of detail compared to those existing schemas, making it more usable to prevent gaps in the communication of information. Conclusion: Implementing the requirements of the MIT into e.g., electronic lab notebooks (ELNs) would make the collection of all necessary data and metadata a daily routine and thereby would improve the reproducibility and reusability of experiments. Furthermore, this approach is particularly beneficial regarding the rapidly expanding developments and applications of novel non-animal alternative testing methods

    Association of exposure to manganese and iron with striatal and thalamic GABA and other neurometabolites - Neuroimaging results from the WELDOX II study

    Get PDF
    OBJECTIVE: Magnetic resonance spectroscopy (MRS) is a non-invasive method to quantify neurometabolite concentrations in the brain. Within the framework of the WELDOX II study, we investigated the association of exposure to manganese (Mn) and iron (Fe) with γ-aminobutyric acid (GABA) and other neurometabolites in the striatum and thalamus of 154 men. MATERIAL AND METHODS: GABA-edited and short echo-time MRS at 3T was used to assess brain levels of GABA, glutamate, total creatine (tCr) and other neurometabolites. Volumes of interest (VOIs) were placed into the striatum and thalamus of both hemispheres of 47 active welders, 20 former welders, 36 men with Parkinson's disease (PD), 12 men with hemochromatosis (HC), and 39 male controls. Linear mixed models were used to estimate the influence of Mn and Fe exposure on neurometabolites while simultaneously adjusting for cerebrospinal fluid (CSF) content, age and other factors. Exposure to Mn and Fe was assessed by study group, blood concentrations, relaxation rates R1 and R2* in the globus pallidus (GP), and airborne exposure (active welders only). RESULTS: The median shift exposure to respirable Mn and Fe in active welders was 23μg/m3 and 110μg/m3, respectively. Airborne exposure was not associated with any other neurometabolite concentration. Mn in blood and serum ferritin were highest in active and former welders. GABA concentrations were not associated with any measure of exposure to Mn or Fe. In comparison to controls, tCr in these VOIs was lower in welders and patients with PD or HC. Serum concentrations of ferritin and Fe were associated with N-acetylaspartate, but in opposed directions. Higher R1 values in the GP correlated with lower neurometabolite concentrations, in particular tCr (exp(β)=0.87, p<0.01) and choline (exp(β)=0.84, p=0.04). R2* was positively associated with glutamate-glutamine and negatively with myo-inositol. CONCLUSIONS: Our results do not provide evidence that striatal and thalamic GABA differ between Mn-exposed workers, PD or HC patients, and controls. This may be due to the low exposure levels of the Mn-exposed workers and the challenges to detect small changes in GABA. Whereas Mn in blood was not associated with any neurometabolite content in these VOIs, a higher metal accumulation in the GP assessed with R1 correlated with generally lower neurometabolite concentrations

    Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach

    Get PDF
    Developmental neurotoxicity (DNT) and many forms of reproductive toxicity (RT) often manifest themselves in functional deficits that are not necessarily based on cell death, but rather on minor changes relating to cell differentiation or communication. The fields of DNT/RT would greatly benefit from in vitro tests that allow the identification of toxicant-induced changes of the cellular proteostasis, or of its underlying transcriptome network. Therefore, the 'human embryonic stem cell (hESC)- derived novel alternative test systems (ESNATS)' European commission research project established RT tests based on defined differentiation protocols of hESC and their progeny. Valproic acid (VPA) and methylmercury (MeHg) were used as positive control compounds to address the following fundamental questions: (1) Does transcriptome analysis allow discrimination of the two compounds? (2) How does analysis of enriched transcription factor binding sites (TFBS) and of individual probe sets (PS) distinguish between test systems? (3) Can batch effects be controlled? (4) How many DNA microarrays are needed? (5) Is the highest non-cytotoxic concentration optimal and relevant for the study of transcriptome changes? VPA triggered vast transcriptional changes, whereas MeHg altered fewer transcripts. To attenuate batch effects, analysis has been focused on the 500 PS with highest variability. The test systems differed significantly in their responses (\20 % overlap). Moreover, within one test system, little overlap between the PS changed by the two compounds has been observed. However, using TFBS enrichment, a relatively large 'common response' to VPA and MeHg could be distinguished from 'compound-specific' responses. In conclusion, the ESNATS assay battery allows classification of human DNT/RT toxicants on the basis of their transcriptome profiles.EU/FP7/ESNATSDFGDoerenkamp-Zbinden Foundatio
    corecore