73 research outputs found

    Challenges of transsphenoidal pituitary surgery in severe brachycephalic dogs

    Get PDF
    INTRODUCTION: Transsphenoidal hypophysectomy is the standard surgical technique for the excision of pituitary neoplasms. Anatomy may be more obscured in brachycephalic skull types due to the crowding of soft tissue and osseous structures. We describe the unique challenges to approach the sphenoid bone and localize the correct burr hole site in severe brachycephalic dogs. MATERIALS AND METHODS: A single institution retrospective case series of brachycephalic dogs with pituitary-dependent hypercortisolism (PDH). Preoperative computed tomography enabled 3D-, and cross-sectional reconstruction to plan and dry-practice the position of the ideal burr hole in relation to the sella turcica, pterygoid hamular processes, and hard palate. Rostral burring of the caudal hard palate obscuring the direct sphenoid approach necessitated adaptations to the original transsphenoidal hypophysectomy procedure. Postoperative outcomes and complications with respect to those seen in mesocephalic dogs are described. RESULTS: Ten brachycephalic dogs including French Bulldogs ( n = 9) and a single Dogue de Bordeaux were included. All dogs were diagnosed with PDH and had preoperative advanced imaging performed on the skull. All but one dog had an enlarged pituitary gland, with a median pituitary/brain value of 0.5 (range 0.21-0.9). A total of 11 transsphenoidal hypophysectomy procedures were performed in these 10 dogs. Rostral extension of the soft palate incision into the hard palate was performed to access the burr hole site on the sphenoid bone. Major complications included aspiration pneumonia ( n = 1), severe gastroesophageal reflux ( n = 1), and central nervous signs (=1). All dogs survived until discharge, with a median time to follow-up of 618 days (range 79-1,669 days). Seven dogs experienced long-term remission of PDH. CONCLUSION: Brachycephalic dogs undergoing transsphenoid al hypophysectomy benefit from meticulous presurgical planning and extension of the approach into the caudal hard palate. Advanced surgical skills can render a good outcome in a technically challenging environment

    Challenges of transsphenoidal pituitary surgery in severe brachycephalic dogs

    Get PDF
    IntroductionTranssphenoidal hypophysectomy is the standard surgical technique for the excision of pituitary neoplasms. Anatomy may be more obscured in brachycephalic skull types due to the crowding of soft tissue and osseous structures. We describe the unique challenges to approach the sphenoid bone and localize the correct burr hole site in severe brachycephalic dogs.Materials and methodsA single institution retrospective case series of brachycephalic dogs with pituitary-dependent hypercortisolism (PDH). Preoperative computed tomography enabled 3D-, and cross-sectional reconstruction to plan and dry-practice the position of the ideal burr hole in relation to the sella turcica, pterygoid hamular processes, and hard palate. Rostral burring of the caudal hard palate obscuring the direct sphenoid approach necessitated adaptations to the original transsphenoidal hypophysectomy procedure. Postoperative outcomes and complications with respect to those seen in mesocephalic dogs are described.ResultsTen brachycephalic dogs including French Bulldogs (n = 9) and a single Dogue de Bordeaux were included. All dogs were diagnosed with PDH and had preoperative advanced imaging performed on the skull. All but one dog had an enlarged pituitary gland, with a median pituitary/brain value of 0.5 (range 0.21–0.9). A total of 11 transsphenoidal hypophysectomy procedures were performed in these 10 dogs. Rostral extension of the soft palate incision into the hard palate was performed to access the burr hole site on the sphenoid bone. Major complications included aspiration pneumonia (n = 1), severe gastroesophageal reflux (n = 1), and central nervous signs (=1). All dogs survived until discharge, with a median time to follow-up of 618 days (range 79–1,669 days). Seven dogs experienced long-term remission of PDH.ConclusionBrachycephalic dogs undergoing transsphenoid al hypophysectomy benefit from meticulous presurgical planning and extension of the approach into the caudal hard palate. Advanced surgical skills can render a good outcome in a technically challenging environment

    Resolving the compact dusty discs around binary post-AGB stars using N-band interferometry

    Get PDF
    We present the first mid-IR long baseline interferometric observations of the circumstellar matter around binary post-AGB stars. Two objects, SX Cen and HD 52961, were observed using the VLTI/MIDI instrument during Science Demonstration Time. Both objects are known binaries for which a stable circumbinary disc is proposed to explain the SED characteristics. This is corroborated by our N-band spectrum showing a crystallinity fraction of more than 50 % for both objects, pointing to a stable environment where dust processing can occur. Surprisingly, the dust surrounding SX Cen is not resolved in the interferometric observations providing an upper limit of 11 mas (or 18 AU at the distance of this object) on the diameter of the dust emission. This confirms the very compact nature of its circumstellar environment. The dust emission around HD 52961 originates from a very small but resolved region, estimated to be ~ 35 mas at 8 micron and ~ 55 mas at 13 micron. These results confirm the disc interpretation of the SED of both stars. In HD 52961, the dust is not homogeneous in its chemical composition: the crystallinity is clearly concentrated in the hotter inner region. Whether this is a result of the formation process of the disc, or due to annealing during the long storage time in the disc is not clear.Comment: 12 pages, 10 figures, accepted for publication in A &

    Properties of the H-alpha-emitting Circumstellar Regions of Be Stars

    Full text link
    Long-baseline interferometric observations obtained with the Navy Prototype Optical Interferometer of the H-alpha-emitting envelopes of the Be stars eta Tauri and beta Canis Minoris are presented. For compatibility with the previously published interferometric results in the literature of other Be stars, circularly symmetric and elliptical Gaussian models were fitted to the calibrated H-alpha observations. The models are sufficient in characterizing the angular distribution of the H-alpha-emitting circumstellar material associated with these Be stars. To study the correlations between the various model parameters and the stellar properties, the model parameters for eta Tau and beta CMi were combined with data for other Be stars from the literature. After accounting for the different distances to the sources and stellar continuum flux levels, it was possible to study the relationship between the net H-alpha emission and the physical extent of the H-alpha-emitting circumstellar region. A clear dependence of the net H-alpha emission on the linear size of the emitting region is demonstrated and these results are consistent with an optically thick line emission that is directly proportional to the effective area of the emitting disk. Within the small sample of stars considered in this analysis, no clear dependence on the spectral type or stellar rotation is found, although the results do suggest that hotter stars might have more extended H-alpha-emitting regions.Comment: 24 pages, 16 figures, accepted for publication in Ap

    The origin of hydrogen line emission for five Herbig Ae/Be stars spatially resolved by VLTI/AMBER spectro-interferometry

    Get PDF
    To trace the accretion and outflow processes around YSOs, diagnostic spectral lines such as the BrG 2.166 micron line are widely used, although due to a lack of spatial resolution, the origin of the line emission is still unclear. Employing the AU-scale spatial resolution which can be achieved with infrared long-baseline interferometry, we aim to distinguish between theoretical models which associate the BrG line emission with mass infall or mass outflow processes. Using the VLTI/AMBER instrument, we spatially and spectrally (R=1500) resolved the inner environment of five Herbig Ae/Be stars (HD163296, HD104237, HD98922, MWC297, V921Sco) in the BrG emission line as well as in the adjacent continuum. All objects (except MWC297) show an increase of visibility within the BrG emission line, indicating that the BrG-emitting region in these objects is more compact than the dust sublimation radius. For HD98922, our quantitative analysis reveals that the line-emitting region is compact enough to be consistent with the magnetospheric accretion scenario. For HD163296, HD104237, MWC297, and V921Sco we identify a stellar wind or a disk wind as the most likely line-emitting mechanism. We search for general trends and find that the size of the BrG-emitting region does not seem to depend on the basic stellar parameters, but correlates with the H-alpha line profile shape. We find evidence for at least two distinct BrG line-formation mechanisms. Stars with a P-Cygni H-alpha line profile and a high mass-accretion rate seem to show particularly compact BrG-emitting regions (R_BrG/R_cont<0.2), while stars with a double-peaked or single-peaked H-alpha-line profile show a significantly more extended BrG-emitting region (0.6<R_BrG/R_cont<1.4), possibly tracing a stellar wind or a disk wind.Comment: 20 pages; 11 figures; Accepted by A&A; a high quality version of the paper can be obtained at http://www.skraus.eu/papers/kraus.HAeBe-BrGsurvey.pd

    Chromosphere of K giant stars Geometrical extent and spatial structure detection

    Full text link
    We aim to constrain the geometrical extent of the chromosphere of non-binary K giant stars and detect any spatial structures in the chromosphere. We performed observations with the CHARA interferometer and the VEGA beam combiner at optical wavelengths. We observed seven non-binary K giant stars. We measured the ratio of the radii of the photosphere to the chromosphere using the interferometric measurements in the Halpha and the Ca II infrared triplet line cores. For beta Ceti, spectro-interferometric observations are compared to an non-local thermal equilibrium (NLTE) semi-empirical model atmosphere including a chromosphere. The NLTE computations provide line intensities and contribution functions that indicate the relative locations where the line cores are formed and can constrain the size of the limb-darkened disk of the stars with chromospheres. We measured the angular diameter of seven K giant stars and deduced their fundamental parameters: effective temperatures, radii, luminosities, and masses. We determined the geometrical extent of the chromosphere for four giant stars. The chromosphere extents obtained range between 16% to 47% of the stellar radius. The NLTE computations confirm that the Ca II/849 nm line core is deeper in the chromosphere of ? Cet than either of the Ca II/854 nm and Ca II/866 nm line cores. We present a modified version of a semi-empirical model atmosphere derived by fitting the Ca II triplet line cores of this star. In four of our targets, we also detect the signature of a differential signal showing the presence of asymmetries in the chromospheres. Conclusions. It is the first time that geometrical extents and structure in the chromospheres of non-binary K giant stars are determined by interferometry. These observations provide strong constrains on stellar atmosphere models.Comment: 10 pages, 12 figure

    An investigation of the close environment of beta Cep with the VEGA/CHARA interferometer

    Full text link
    High-precision interferometric measurements of pulsating stars help to characterize their close environment. In 1974, a close companion was discovered around the pulsating star beta Cep using the speckle interferometry technique and features at the limit of resolution (20 milli-arcsecond or mas) of the instrument were mentioned that may be due to circumstellar material. Beta Cep has a magnetic field that might be responsible for a spherical shell or ring-like structure around the star as described by the MHD models. Using the visible recombiner VEGA installed on the CHARA long-baseline interferometer at Mt. Wilson, we aim to determine the angular diameter of beta Cep and resolve its close environment with a spatial resolution up to 1 mas level. Medium spectral resolution (R=6000) observations of beta Cep were secured with the VEGA instrument over the years 2008 and 2009. These observations were performed with the S1S2 (30m) and W1W2 (100m) baselines of the array. We investigated several models to reproduce our observations. A large-scale structure of a few mas is clearly detected around the star with a typical flux relative contribution of 0.23 +- 0.02. Our best model is a co-rotational geometrical thin ring around the star as predicted by magnetically-confined wind shock models. The ring inner diameter is 8.2 +- 0.8 mas and the width is 0.6 +- 0.7 mas. The orientation of the rotation axis on the plane of the sky is PA = 60 +- 1 deg, while the best fit of the mean angular diameter of beta Cep gives UD[V] = 0.22 +- 0.05 mas. Our data are compatible with the predicted position of the close companion of beta Cep. These results bring additional constraints on the fundamental parameters and on the future MHD and asteroseismological models of the star.Comment: Paper accepted for publication in A&A (in press

    Modern optical astronomy: technology and impact of interferometry

    Get PDF
    The present `state of the art' and the path to future progress in high spatial resolution imaging interferometry is reviewed. The review begins with a treatment of the fundamentals of stellar optical interferometry, the origin, properties, optical effects of turbulence in the Earth's atmosphere, the passive methods that are applied on a single telescope to overcome atmospheric image degradation such as speckle interferometry, and various other techniques. These topics include differential speckle interferometry, speckle spectroscopy and polarimetry, phase diversity, wavefront shearing interferometry, phase-closure methods, dark speckle imaging, as well as the limitations imposed by the detectors on the performance of speckle imaging. A brief account is given of the technological innovation of adaptive-optics (AO) to compensate such atmospheric effects on the image in real time. A major advancement involves the transition from single-aperture to the dilute-aperture interferometry using multiple telescopes. Therefore, the review deals with recent developments involving ground-based, and space-based optical arrays. Emphasis is placed on the problems specific to delay-lines, beam recombination, polarization, dispersion, fringe-tracking, bootstrapping, coherencing and cophasing, and recovery of the visibility functions. The role of AO in enhancing visibilities is also discussed. The applications of interferometry, such as imaging, astrometry, and nulling are described. The mathematical intricacies of the various `post-detection' image-processing techniques are examined critically. The review concludes with a discussion of the astrophysical importance and the perspectives of interferometry.Comment: 65 pages LaTeX file including 23 figures. Reviews of Modern Physics, 2002, to appear in April issu

    Spatially resolving the hot CO around the young Be star 51 Ophiuchi

    Get PDF
    51 Oph is one of the few young Be stars displaying a strong CO overtone emission at 2.3 microns in addition to the near infrared excess commonly observed in this type of stars. In this paper we first aim to locate the CO bandheads emitting region. Then, we compare its position with respect to the region emitting the near infrared continuum. We have observed 51 Oph with AMBER in low spectral resolution (R=35), and in medium spectral resolution (R=1500) centered on the CO bandheads. The medium resolution AMBER observations clearly resolve the CO bandheads. Both the CO bandheads and continuum emissions are spatially resolved by the interferometer. Using simple analytical ring models to interpret the measured visibilities, we find that the CO bandheads emission region is compact, located at 0.150.040.070.15_{-0.04}^{0.07}AU from the star, and that the adjacent continuum is coming from a region further away 0.250.030.060.25_{-0.03}^{0.06}AU. These results confirm the commonly invoked scenario in which the CO bandheads originate in a dust free hot gaseous disk. Furthermore, the continuum emitting region is closer to the star than the dust sublimation radius (by at least a factor two) and we suggest that hot gas inside the dust sublimation radius significantly contributes to the observed 2 μ\mum continuum emission.Comment: 5 pages, 5 figure

    Images of Betelgeuse with VLTI/MATISSE across the Great Dimming

    Get PDF
    From Nov. 2019 to May 2020, the red supergiant star Betelgeuse experienced an unprecedented drop of brightness in the visible domain called the Great Dimming event (GDE). Large atmospheric dust clouds and large photospheric convective features are suspected to be responsible for it. To better understand the dimming event, we used mid-infrared long-baseline spectro-interferometric measurements of Betelgeuse taken with the Very Large Telescope Interferometer/Multi AperTure mid-Infrared SpectroScopic Experiment (VLTI/MATISSE) instrument before (Dec. 2018), during (Feb. 2020), and after (Dec. 2020) the GDE. We present data in the 3.98-4.15 µm range to cover SiO spectral features molecules as well as adjacent continuum. We have employed geometrical models, image reconstruction, as well as radiative transfer models to monitor the spatial distribution of SiO over the stellar surface. We find a strongly inhomogeneous spatial distribution of SiO that appears to be looking very different between our observing epochs, indicative of a vigorous activity in the stellar atmosphere. The contrast of our images is small in the pseudo-continuum for all epochs, implying that our MATISSE observations support both cold spot and dust cloud model
    corecore