21 research outputs found

    Triassic Isopoda – three new species from Central Europe shed light on the early diversity of the group

    Get PDF
    Despite its vernacular names (e.g. ‘woodlice’) Isopoda is a group with mostly aquatic species, with most species living in marine environments. The fossil record for isopods compared to other groups of Eucrustacea is relatively sparse. This applies even more for the Triassic. While in the Jurassic Isopoda is relatively well represented by fossils, only eight species have previously been described from the Triassic. In this study three new species of Isopoda are described from two field sites in Europe: Obtusotelson summesbergeri sp. nov. and Discosalaputium aschauerorum sp. nov. from Polzberg (Gaming, Lower Austria, Austria) and Gelrincola winterswijkensis sp. nov. from Winterswijk (Gelderland, Netherlands). All three new species are interpreted as representatives of Scutocoxifera (ingroup of Isopoda). The species Gelrincola winterswijkensis sp. nov. is further interpreted to be a representative of Cymothoida (ingroup of Scutocoxifera). Most of the oldest fossils of Isopoda belong to Phreatoicidea, which is supposed to be the sistergroup to all remaining Isopoda. Nowadays, Phreatoicidea is a small relic group, its representatives living in freshwater environments. The new species herein presented contribute to our understanding of the diversity of Isopoda in the Triassic and support the assumption that the transition from a dominance of Phreatoicidea towards the dominance of the remaining lineages of Isopoda happened quite early (likely prior to the Triassic)

    Triassic isopoda – Three new species from central europe shed light on the early diversity of the group

    No full text
    Despite its vernacular names (e.g. ‘woodlice’) Isopoda is a group with mostly aquatic species, with most species living in marine environments. The fossil record for isopods compared to other groups of Eucrustacea is relatively sparse. This applies even more for the Triassic. While in the Jurassic Isopoda is relatively well represented by fossils, only eight species have previously been described from the Triassic. In this study three new species of Isopoda are described from two field sites in Europe: Obtusotelson summesbergeri sp. nov. and Discosalaputium aschauerorum sp. nov. from Polzberg (Gaming, Lower Austria, Austria) and Gelrincola winterswijkensis sp. nov. from Winterswijk (Gelderland, Netherlands). All three new species are interpreted as representatives of Scutocoxifera (ingroup of Isopoda). The species Gelrincola winterswijkensis sp. nov. is further interpreted to be a representative of Cymothoida (ingroup of Scutocoxifera). Most of the oldest fossils of Isopoda belong to Phreatoicidea, which is supposed to be the sistergroup to all remaining Isopoda. Nowadays, Phreatoicidea is a small relic group, its representatives living in freshwater environments. The new species herein presented contribute to our understanding of the diversity of Isopoda in the Triassic and support the assumption that the transition from a dominance of Phreatoicidea towards the dominance of the remaining lineages of Isopoda happened quite early (likely prior to the Triassic)

    Triassic isopoda – Three new species from central europe shed light on the early diversity of the group

    No full text
    Despite its vernacular names (e.g. ‘woodlice’) Isopoda is a group with mostly aquatic species, with most species living in marine environments. The fossil record for isopods compared to other groups of Eucrustacea is relatively sparse. This applies even more for the Triassic. While in the Jurassic Isopoda is relatively well represented by fossils, only eight species have previously been described from the Triassic. In this study three new species of Isopoda are described from two field sites in Europe: Obtusotelson summesbergeri sp. nov. and Discosalaputium aschauerorum sp. nov. from Polzberg (Gaming, Lower Austria, Austria) and Gelrincola winterswijkensis sp. nov. from Winterswijk (Gelderland, Netherlands). All three new species are interpreted as representatives of Scutocoxifera (ingroup of Isopoda). The species Gelrincola winterswijkensis sp. nov. is further interpreted to be a representative of Cymothoida (ingroup of Scutocoxifera). Most of the oldest fossils of Isopoda belong to Phreatoicidea, which is supposed to be the sistergroup to all remaining Isopoda. Nowadays, Phreatoicidea is a small relic group, its representatives living in freshwater environments. The new species herein presented contribute to our understanding of the diversity of Isopoda in the Triassic and support the assumption that the transition from a dominance of Phreatoicidea towards the dominance of the remaining lineages of Isopoda happened quite early (likely prior to the Triassic)

    Phenotypic plasticity explains apparent reverse evolution of fat synthesis in parasitic wasps

    Get PDF
    Numerous cases of evolutionary trait loss and regain have been reported over the years. Here, we argue that such reverse evolution can also become apparent when trait expression is plastic in response to the environment. We tested this idea for the loss and regain of fat synthesis in parasitic wasps. We first show experimentally that the wasp Leptopilina heterotoma switches lipogenesis on in a fat-poor environment, and completely off in a fat-rich environment. Plasticity suggests that this species did not regain fat synthesis, but that it can be switched off in some environmental settings. We then compared DNA sequence variation and protein domains of several more distantly related parasitoid species thought to have lost lipogenesis, and found no evidence for non-functionality of key lipogenesis genes. This suggests that other parasitoids may also show plasticity of fat synthesis. Last, we used individual-based simulations to show that a switch for plastic expression can remain functional in the genome for thousands of generations, even if it is only used sporadically. The evolution of plasticity could thus also explain other examples of apparent reverse evolution

    Designing two self-assembly mechanisms into one viral capsid protein

    Get PDF
    ELP-CP, a structural fusion protein of the thermally responsive elastin-like polypeptide (ELP) and a viral capsid protein (CP), was designed, and its assembly properties were investigated. Interestingly, this protein-based block copolymer could be self-assembled via two mechanisms into two different, well-defined nanocapsules: (1) pH-induced assembly yielded 28 nm virus-like particles, and (2) ELP-induced assembly yielded 18 nm virus-like particles. The latter were a result of the emergent properties of the fusion protein. This work shows the feasibility of creating a self-assembly system with new properties by combining two structural protein elements

    Bacterial CS2 Hydrolases from Acidithiobacillus thiooxidans Strains Are Homologous to the Archaeal Catenane CS2 Hydrolase

    No full text
    Contains fulltext : 119229.pdf (publisher's version ) (Closed access)Carbon disulfide (CS2) and carbonyl sulfide (COS) are important in the global sulfur cycle, and CS2 is used as a solvent in the viscose industry. These compounds can be converted by sulfur-oxidizing bacteria, such as Acidithiobacillus thiooxidans species, to carbon dioxide (CO2) and hydrogen sulfide (H2S), a property used in industrial biofiltration of CS2-polluted airstreams. We report on the mechanism of bacterial CS2 conversion in the extremely acidophilic A. thiooxidans strains S1p and G8. The bacterial CS2 hydrolases were highly abundant. They were purified and found to be homologous to the only other described (archaeal) CS2 hydrolase from Acidianus strain A1-3, which forms a catenane of two interlocked rings. The enzymes cluster in a group of beta-carbonic anhydrase (beta-CA) homologues that may comprise a subclass of CS2 hydrolases within the beta-CA family. Unlike CAs, the CS2 hydrolases did not hydrate CO2 but converted CS2 and COS with H2O to H2S and CO2. The CS2 hydrolases of A. thiooxidans strains G8, 2Bp, Sts 4-3, and BBW1, like the CS2 hydrolase of Acidianus strain A1-3, exist as both octamers and hexadecamers in solution. The CS2 hydrolase of A. thiooxidans strain S1p forms only octamers. Structure models of the A. thiooxidans CS2 hydrolases based on the structure of Acidianus strain A1-3 CS2 hydrolase suggest that the A. thiooxidans strain G8 CS2 hydrolase may also form a catenane. In the A. thiooxidans strain S1p enzyme, two insertions (positions 26 and 27 [PD] and positions 56 to 61 [TPAGGG]) and a nine-amino-acid-longer C-terminal tail may prevent catenane formation
    corecore