38 research outputs found

    Screening for abnormal glycosylation in a cohort of adult liver disease patients

    Get PDF
    Congenital Disorders of Glycosylation (CDG) are a rapidly expanding group of rare genetic defects in glycosylation. In a novel CDG subgroup of Vacuolar-ATPase assembly defects various degrees of hepatic injury have been described, including end stage liver disease. However, the CDG diagnostic workflow can be complex as liver disease per se may be associated with abnormal glycosylation. Therefore, we collected serum samples of patients with a wide range of liver pathology to study the performance and yield of two CDG screening methods. Our aim was to identify glycosylation patterns that could help to differentiate between primary and secondary glycosylation defects in liver disease. To this end, we analyzed serum samples of 1042 adult liver disease patients. This cohort consisted of 567 liver transplant candidates and 475 chronic liver disease patients. Our workflow consisted of screening for abnormal glycosylation by transferrin isoelectric focusing (tIEF), followed by in-depth analysis of the abnormal samples with quadruple time-of-flight mass spectrometry (QTOF-MS). Screening with tIEF resulted in identification of 247 (26%) abnormal samples. QTOF-MS analysis of 110 of those did not reveal glycosylation abnormalities comparable with those seen in V-ATPase assembly factor deficiencies. However, two patients presented with isolated sialylation deficiency. Fucosylation was significantly increased in liver transplant candidates compared to healthy controls and patients with chronic liver disease. In conclusion, a significant percentage of patients with liver disease presented with abnormal CDG screening results, however, not indicative for a V-ATPase assembly factor defect. Advanced glycoanalytical techniques assist in the dissection of secondary and primary glycosylation defects. This article is protected by copyright. All rights reserved

    Mutations in GDP-mannose pyrophosphorylase b cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of α-dystroglycan

    Get PDF
    Congenital muscular dystrophies with hypoglycosylation of α-dystroglycan (α-DG) are a heterogeneous group of disorders often associated with brain and eye defects in addition to muscular dystrophy. Causative variants in 14 genes thought to be involved in the glycosylation of α-DG have been identified thus far. Allelic mutations in these genes might also cause milder limb-girdle muscular dystrophy phenotypes. Using a combination of exome and Sanger sequencing in eight unrelated individuals, we present evidence that mutations in guanosine diphosphate mannose (GDP-mannose) pyrophosphorylase B (GMPPB) can result in muscular dystrophy variants with hypoglycosylated α-DG. GMPPB catalyzes the formation of GDP-mannose from GTP and mannose-1-phosphate. GDP-mannose is required for O-mannosylation of proteins, including α-DG, and it is the substrate of cytosolic mannosyltransferases. We found reduced α-DG glycosylation in the muscle biopsies of affected individuals and in available fibroblasts. Overexpression of wild-type GMPPB in fibroblasts from an affected individual partially restored glycosylation of α-DG. Whereas wild-type GMPPB localized to the cytoplasm, five of the identified missense mutations caused formation of aggregates in the cytoplasm or near membrane protrusions. Additionally, knockdown of the GMPPB ortholog in zebrafish caused structural muscle defects with decreased motility, eye abnormalities, and reduced glycosylation of α-DG. Together, these data indicate that GMPPB mutations are responsible for congenital and limb-girdle muscular dystrophies with hypoglycosylation of α-DG. © 2013 The American Society of Human Genetics.Funding for UK10K was provided by the Wellcome Trust under award WT091310

    Nanomolar affinity, iminosugar-based chemical probes for specific labeling of lysosomal glucocerebrosidase

    No full text
    Three different photoprobes were synthesized to label beta-glucosidases; one probe was based on glucose, two probes on the iminosugar deoxynojirimycin. The affinity of the probes for three different beta-glucosidases was determined. Furthermore, their labeling efficiencies, binding specificities through competition with deoxynojirimycin, and binding specificities in the presence of cell lysate, were evaluated. Especially one showed very high affinity towards non-lysosomal glucoceramidase (IC(50)=20nM

    Isotopic Tracing of Nucleotide Sugar Metabolism in Human Pluripotent Stem Cells

    Get PDF
    Metabolism not only produces energy necessary for the cell but is also a key regulator of several cellular functions, including pluripotency and self-renewal. Nucleotide sugars (NSs) are activated sugars that link glucose metabolism with cellular functions via protein N-glycosylation and O-GlcNAcylation. Thus, understanding how different metabolic pathways converge in the synthesis of NSs is critical to explore new opportunities for metabolic interference and modulation of stem cell functions. Tracer-based metabolomics is suited for this challenge, however chemically-defined, customizable media for stem cell culture in which nutrients can be replaced with isotopically labeled analogs are scarcely available. Here, we established a customizable flux-conditioned E8 (FC-E8) medium that enables stem cell culture with stable isotopes for metabolic tracing, and a dedicated liquid chromatography mass-spectrometry (LC-MS/MS) method targeting metabolic pathways converging in NS biosynthesis. By C-13(6)-glucose feeding, we successfully traced the time-course of carbon incorporation into NSs directly via glucose, and indirectly via other pathways, such as glycolysis and pentose phosphate pathways, in induced pluripotent stem cells (hiPSCs) and embryonic stem cells. Then, we applied these tools to investigate the NS biosynthesis in hiPSC lines from a patient affected by deficiency of phosphoglucomutase 1 (PGM1), an enzyme regulating the synthesis of the two most abundant NSs, UDP-glucose and UDP-galactose.Stem cells & developmental biolog

    Human ISPD Is a Cytidyltransferase Required for Dystroglycan O-Mannosylation.

    Get PDF
    A unique, unsolved O-mannosyl glycan on α-dystroglycan is essential for its interaction with protein ligands in the extracellular matrix. Defective O-mannosylation leads to a group of muscular dystrophies, called dystroglycanopathies. Mutations in isoprenoid synthase domain containing (ISPD) represent the second most common cause of these disorders, however, its molecular function remains uncharacterized. The human ISPD (hISPD) crystal structure showed a canonical N-terminal cytidyltransferase domain linked to a C-terminal domain that is absent in cytidyltransferase homologs. Functional studies demonstrated cytosolic localization of hISPD, and cytidyltransferase activity toward pentose phosphates, including ribulose 5-phosphate, ribose 5-phosphate, and ribitol 5-phosphate. Identity of the CDP sugars was confirmed by liquid chromatography quadrupole time-of-flight mass spectrometry and two-dimensional nuclear magnetic resonance spectroscopy. Our combined results indicate that hISPD is a cytidyltransferase, suggesting the presence of a novel human nucleotide sugar essential for functional α-dystroglycan O-mannosylation in muscle and brain. Thereby, ISPD deficiency can be added to the growing list of tertiary dystroglycanopathies

    Dynamic analysis of sugar metabolism reveals the mechanisms of action of synthetic sugar analogs

    No full text
    Synthetic sugar analogs are widely applied in metabolic oligosaccharide engineering (MOE) and as novel drugs to interfere with glycoconjugate biosynthesis. However, mechanistic insights on their exact metabolism in the cell and over time are mostly lacking. We developed sensitive ion-pair UHPLC-QqQ mass spectrometry methodology for analysis of sugar metabolites in organisms and in model cells and identified novel low abundant nucleotide sugars in human cells, such as ADP-glucose and UDP-arabinose, and CMP-sialic acid (CMP-NeuNAc) in Drosophila. Dynamic tracing of propargyloxycarbonyl (Poc) labeled analogs, commonly used for MOE, revealed that ManNPoc is metabolized to both CMP-NeuNPoc and UDP-GlcNPoc. Finally, combined treatment of B16-F10 melanoma cells with antitumor compound 3Fax-NeuNAc and 13C-labeled GlcNAc revealed that endogenous CMP-NeuNAc levels started to decrease before a subsequent decrease of ManNAc 6-phosphate was observed. This implicates 3Fax-NeuNAc first acts as a substrate for cytosolic CMP-sialic acid synthetase and subsequently its product CMP-3Fax-NeuNAc functions as a feed-back inhibitor for UDP-GlcNAc 2-epimerase/N-acetylmannosamine kinase. Thus, dynamic analysis of sugar metabolites provides key insights into the time-dependent metabolism of synthetic sugars, which is important for the rational design of analogs with optimized effects

    Dynamic tracing of sugar metabolism reveals the mechanisms of action of synthetic sugar analogs

    Get PDF
    Synthetic sugar analogs are widely applied in metabolic oligosaccharide engineering (MOE) and as novel drugs to interfere with glycoconjugate biosynthesis. However, mechanistic insights on their exact cellular metabolism over time are mostly lacking. We combined ion-pair UHPLC-QqQ mass spectrometry using tributyl- and triethylamine buffers for sensitive analysis of sugar metabolites in cells and organisms and identified low abundant nucleotide sugars, such as UDP-arabinose in human cell lines and CMP-sialic acid (CMP-NeuNAc) in Drosophila. Furthermore, MOE revealed that propargyloxycarbonyl (Poc) labeled ManNPoc was metabolized to both CMP-NeuNPoc and UDP-GlcNPoc. Finally, time-course analysis of the effect of antitumor compound 3Fax-NeuNAc by incubation of B16-F10 melanoma cells with N-acetyl-D-[UL-13C6]glucosamine revealed full depletion of endogenous ManNAc 6-phosphate and CMP-NeuNAc within 24 hour. Thus, dynamic tracing of sugar metabolic pathways provides a general approach to reveal time-dependent insights into the metabolism of synthetic sugars, which is important for the rational design of analogs with optimized effects.ISSN:0959-665
    corecore