72 research outputs found

    GENETIC PREDICTORS OF HYPERGLYCEMIA DUE TO HYDROCHLOROTHIAZIDE THERAPY

    Get PDF
    Response to pharmacological treatment is variable among individuals. Some patients respond favorably to a drug while others develop adverse reactions. Early investigations showed evidence of variation in genes that code for drug receptors, drug transporters, and drug metabolizing enzymes; and pharmacogenetics appeared as the science that studies the relationship between drug response and genetic variation. Thiazide diuretics are the recommended first-line monotherapy for hypertension (i.e. SBP\u3e140 or DBP\u3e90). Even so, diuretics are associated with adverse metabolic side effects, such as hyperglycemia, which increase the risk of developing type 2 diabetes. Published approaches testing variation in candidate genes (e.g. the renin-angiotensin-aldosteron system (RAAS) and salt–sensitivity genes) have met with only limited success. We conducted the first genome wide association study to identify genes influencing hyperglycemia as an adverse effect of thiazide diuretics in non-Hispanic White hypertensive patients participating in the Genetic Epidemiology of Responses to Antihypertensives (GERA) and Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) clinical trials. No SNP reached the a priori defined threshold of statistical significance (p\u3c5x10-8). We detected 50 SNPs in 9 genomic regions with suggestive p-values (p\u3c1x10-5). Two of them, rs6870564 (p-value=3.28 X 10-6) and rs7702121 (p-value=5.09 X 10-6), were located close to biologic candidate genes, MYO and MGAT1, and one SNP in a genomic region in chromosome 6, rs7762018 (p-value=4.59 X 10-6) has been previously related to Insulin-Dependent Diabetes Mellitus (IDDM8). I conclude that 1) there are unlikely to be common SNPs with large effects on the adverse metabolic effects to hydrochlorothiazide treatment and 2) larger sample sizes are needed for pharmacogenetic studies of inter-individual variation in response to commonly prescribed medication

    GENETIC PREDICTORS OF METABOLIC SIDE EFFECTS OF DIURETIC THERAPY

    Get PDF
    Thiazide diuretics are a recommended first-line monotherapy for hypertension (i.e.SBP\u3e140 mmHg or DBP\u3e90 mmHg). Even so, diuretics are associated with adverse metabolic side effects, such as hyperlipidemia, hyperglycemia and hypokalemia which increase the risk of developing type II diabetes. This thesis used three analytical strategies to identify and quantify genetic factors that contribute to the development of adverse metabolic effects due to thiazide diuretic treatment. I performed a genome-wide association study (GWAS) and meta-analysis of the change in fasting plasma glucose and triglycerides in response to HCTZ from two different clinical trials: the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) and the Genetic Epidemiology of Responses to Antihypertensive (GERA) studies. Two SNPs (rs12279250 and rs4319515 (r2=0.73)), located at 11p15.1 in the NELL1 gene, achieved genome-wide significance for association with change in fasting plasma triglycerides in African Americans, whereby each variant allele was associated with a 28 mg/dl increase in the change in triglycerides. NELL1 encodes a cytoplasmic protein that contains epidermal growth factor (EGF)-like repeats and has been shown to represses adipogenic differentiation. No statistical significant association was found in the case of change in glucose or change in triglycerides in European-Americans in this study. In order to increase the sample size and signal for the change in glucose, I performed a GWAS of longitudinal data and meta-analysis from 14 cohorts which are part of the CHARGE consortium. No statistically significant association was found. The lack of positive results in this analysis suggested that it is unlikely that there is a single common SNP with a large effect on the adverse reaction to the diuretic use. Therefore, we can speculate about the possible interaction of multiple variants each with modest effect sizes or the fact that rare variants are playing a greater part in this particular phenotype. Finally, I performed a genome-wide association study and a Multi-Ethnic Meta-Analysis of change in blood potassium levels 718 European- and African-American hypertensive participants. SNPs rs10845697 (Bayes Factor=5.560) on chromosome 12, near to the HEME binding protein 1 gene, and rs11135740 (Bayes Factor= 5.258) on chromosome 8 near the Mitoferrin-1 gene reached GWAS significance (Bayes Factor \u3e 5). These results, if replicated, suggested a novel mechanism involving effects of genes in the HEME pathway influencing hydrochlorothiazide-induced renal potassium loss. The main goal of this research was to explore first steps in developing hydrochlorothiazide personalize medicine in order to provide a lasting and positive impact on public health

    Evaluation of gene-based family-based methods to detect novel genes associated with familial late onset Alzheimer disease

    Get PDF
    AbstractGene-based tests to study the combined effect of rare variants towards a particular phenotype have been widely developed for case-control studies, but their evolution and adaptation for family-based studies, especially for complex incomplete families, has been slower. In this study, we have performed a practical examination of all the latest gene-based methods available for family-based study designs using both simulated and real datasets. We have examined the performance of several collapsing, variance-component and transmission disequilibrium tests across eight different software and twenty-two models utilizing a cohort of 285 families (N=1,235) with late-onset Alzheimer disease (LOAD). After a thorough examination of each of these tests, we propose a methodological approach to identify, with high confidence, genes associated with the studied phenotype with high confidence and we provide recommendations to select the best software and model for family-based gene-based analyses. Additionally, in our dataset, we identified PTK2B, a GWAS candidate gene for sporadic AD, along with six novel genes (CHRD, CLCN2, HDLBP, CPAMD8, NLRP9, MAS1L) as candidates genes for familial LOAD.</jats:p

    Role of ABCA7 loss-of-function variant in Alzheimer\u27s disease: A replication study in European–Americans

    Get PDF
    INTRODUCTION: A recent study found a significant increase of ABCA7 loss-of-function variants in Alzheimer’s disease (AD) cases compared to controls. Some variants were located on noncoding regions, but it was demonstrated that they affect splicing. Here, we try to replicate the association between AD risk and ABCA7 loss-of-function variants at both the single-variant and gene level in a large and well-characterized European American dataset. METHODS: We genotyped the GWAS common variant and four rare variants previously reported for ABCA7 in 3476 European–Americans. RESULTS: We were not able to replicate the association at the single-variant level, likely due to a lower effect size on the European American population which led to limited statistical power. However, we did replicate the association at the gene level; we found a significant enrichment of ABCA7 loss-of-function variants in AD cases compared to controls (P = 0.0388; odds ratio =1.54). We also confirmed that the association of the loss-of-function variants is independent of the previously reported genome-wide association study signal. CONCLUSIONS: Although the effect size for the association of ABCA7 loss-of-function variants with AD risk is lower in our study (odds ratio = 1.54) compared to the original report (odds ratio = 2.2), the replication of the findings of the original report provides a stronger foundation for future functional applications. The data indicate that different independent signals that modify risk for complex traits may exist on the same locus. Additionally, our results suggest that replication of rare-variant studies should be performed at the gene level rather than focusing on a single variant

    Genome-Wide Association Study for Variants That Modulate Relationships Between Cerebrospinal Fluid Amyloid-Beta 42, Tau, and P-Tau Levels

    Get PDF
    Background: A relationship quantitative trait locus exists when the correlation between multiple traits varies by genotype for that locus. Relationship quantitative trait loci (rQTL) are often involved in gene-by-gene (G×G) interactions or gene-by-environmental interactions, making them a powerful tool for detecting G×G. Methods: We performed genome-wide association studies to identify rQTL between tau and Aβ42 and ptau and Aβ42 with over 3000 individuals using age, gender, series, APOE ε2, APOE ε4, and two principal components for population structure as covariates. Each significant rQTL was separately screened for interactions with other loci for each trait in the rQTL model. Parametric bootstrapping was used to assess significance. Results: We found four significant tau/Aβ42 rQTL from three unique locations and six ptau/Aβ42 rQTL from five unique locations. G×G screens with these rQTL produced four significant G×G interactions (one Aβ42, two ptau, and one tau) with four rQTL where each second locus was from a unique location. On follow-up, rs1036819 and rs74025622 were associated with Alzheimer’s disease (AD) case/control status; rs15205 and rs79099429 were associated with rate of decline. Conclusions: The two most significant rQTL (rs8027714 and rs1036819) for ptau/Aβ42 are on different chromosomes and both are strong hits for pelvic organ prolapse. While diseases of the nervous system can cause pelvic organ prolapse, it is unlikely related to the ptau/Aβ42 relationship but may suggest that these two loci share a pathway. In addition to a ptau/Aβ42 rQTL and association with AD case/control status, rs1036819 is a strong rQTL for case/control status/Aβ42 and for tau/Aβ42. It resides in the ZFAT gene, which is related to autoimmune thyroid disease. For tau, rs9817620 interacts with the tau/Aβ42 rQTL rs74025622. It is in the CHL1 gene, which is a neural cell adhesion molecule and may be involved in signal transduction pathways. CHL1 is related to BACE1, which is a β-secretase enzyme that initiates production of the β-amyloid peptide involved in AD and is a primary drug target. Overall, there are numerous loci that affect the relationship between these important AD endophenotypes and some are due to interactions with other loci. Some affect the risk of AD and/or rate of progression

    Plan de negocios de un centro especializado itinerante de accesos vasculares para hemodi?lisis en Lima Metropolitana

    Get PDF
    El presente trabajo, se realiza en base a estudios de mercado tanto cuantitativos como cualitativos; capt?ndose una necesidad no satisfecha y una brecha de oportunidad importante en pacientes renales cr?nicos, de los estratos B, C y D. Esto nos permite ofrecer un servicio de creaci?n de un acceso vascular de forma segura, oportuna y de calidad, as?mismo, el acompa?amiento cl?nico, ya sea de forma f?sica o virtual, por parte de un equipo multidisciplinario en tres puntos estrat?gicos como; Los Olivos, La Victoria y Surco; lo que garantiza un funcionamiento adecuado del acceso creado y el buen desenlace cl?nico de los pacientes renales cr?nicos, que los necesiten. Para la constituci?n del negocio, se necesitar? la inversi?n inicial de cuatro socios, que, siguiendo nuestras proyecciones, obtendr?n indicadores de rendimiento positivo a partir del del segundo a?o, con un m?ximo proyectado a los cinco a?os de funcionamiento; conciliando una atenci?n cl?nica de calidad con una adecuada rentabilidad del negocio, asegurando la sostenibilidad futura del mismo

    Genome-wide association study of brain amyloid deposition as measured by Pittsburgh Compound-B (PiB)-PET imaging

    Get PDF
    Deposition of amyloid plaques in the brain is one of the two main pathological hallmarks of Alzheimer's disease (AD). Amyloid positron emission tomography (PET) is a neuroimaging tool that selectively detects in vivo amyloid deposition in the brain and is a reliable endophenotype for AD that complements cerebrospinal fluid biomarkers with regional information. We measured in vivo amyloid deposition in the brains of ~1000 subjects from three collaborative AD centers and ADNI using 11C-labeled Pittsburgh Compound-B (PiB)-PET imaging followed by meta-analysis of genome-wide association studies, first to our knowledge for PiB-PET, to identify novel genetic loci for this endophenotype. The APOE region showed the most significant association where several SNPs surpassed the genome-wide significant threshold, with APOE*4 being most significant (P-meta = 9.09E-30; β = 0.18). Interestingly, after conditioning on APOE*4, 14 SNPs remained significant at P < 0.05 in the APOE region that were not in linkage disequilibrium with APOE*4. Outside the APOE region, the meta-analysis revealed 15 non-APOE loci with P < 1E-05 on nine chromosomes, with two most significant SNPs on chromosomes 8 (P-meta = 4.87E-07) and 3 (P-meta = 9.69E-07). Functional analyses of these SNPs indicate their potential relevance with AD pathogenesis. Top 15 non-APOE SNPs along with APOE*4 explained 25-35% of the amyloid variance in different datasets, of which 14-17% was explained by APOE*4 alone. In conclusion, we have identified novel signals in APOE and non-APOE regions that affect amyloid deposition in the brain. Our data also highlights the presence of yet to be discovered variants that may be responsible for the unexplained genetic variance of amyloid deposition

    Chitinase-3-like 1 protein (CHI3L1) locus influences cerebrospinal fluid levels of YKL-40

    Get PDF
    BACKGROUND: Alzheimer’s disease (AD) pathology appears several years before clinical symptoms, so identifying ways to detect individuals in the preclinical stage is imperative. The cerebrospinal fluid (CSF) Tau/Aβ(42) ratio is currently the best known predictor of AD status and cognitive decline, and the ratio of CSF levels of chitinase-3-like 1 protein (CHI3L1, YKL-40) and amyloid beta (Aβ(42)) were reported as predictive, but individual variability and group overlap inhibits their utility for individual diagnosis making it necessary to find ways to improve sensitivity of these biomarkers. METHODS: We used linear regression to identify genetic loci associated with CSF YKL-40 levels in 379 individuals (80 cognitively impaired and 299 cognitively normal) from the Charles F and Joanne Knight Alzheimer’s Disease Research Center. We tested correlations between YKL-40 and CSF Tau/Aβ(42) ratio, Aβ(42), tau, and phosphorylated tau (ptau(181)). We used studentized residuals from a linear regression model of the log-transformed, standardized protein levels and the additive reference allele counts from the most significant locus to adjust YKL-40 values and tested the differences in correlations with CSF Tau/Aβ(42) ratio, Aβ(42), tau, and ptau(181). RESULTS: We found that genetic variants on the CH13L1 locus were significantly associated with CSF YKL-40 levels, but not AD risk, age at onset, or disease progression. The most significant variant is a reported expression quantitative trait locus for CHI3L1, the gene which encodes YKL-40, and explained 12.74 % of the variance in CSF YKL-40 in our study. YKL-40 was positively correlated with ptau(181) (r = 0.521) and the strength of the correlation significantly increased with the addition of genetic information (r = 0.573, p = 0.006). CONCLUSIONS: CSF YKL-40 levels are likely a biomarker for AD, but we found no evidence that they are an AD endophenotype. YKL-40 levels are highly regulated by genetic variation, and by including genetic information the strength of the correlation between YKL-40 and ptau(181) levels is significantly improved. Our results suggest that studies of potential biomarkers may benefit from including genetic information. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12883-016-0742-9) contains supplementary material, which is available to authorized users
    • …
    corecore