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RESEARCH ARTICLE Open Access

TREM2 brain transcript-specific studies in
AD and TREM2 mutation carriers
Jorge L. Del-Aguila1,2,3, Bruno A. Benitez1,2,3, Zeran Li1,2,3, Umber Dube1,2,3, Kathie A. Mihindukulasuriya1,2,
John P. Budde1,2,3, Fabiana H. G. Farias1,2,3, Maria Victoria Fernández1,2,3, Laura Ibanez1,2,3, Shan Jiang1,3,
Richard J. Perrin3,4,5, Nigel J. Cairns3,4,5,6, John C. Morris4,5, Oscar Harari1,2,3,4 and Carlos Cruchaga1,2,3,4*

Abstract

Background: Low frequency coding variants in TREM2 are associated with Alzheimer disease (AD) risk and
cerebrospinal fluid (CSF) TREM2 protein levels are different between AD cases and controls. Similarly, TREM2
risk variant carriers also exhibit differential CSF TREM2 levels. TREM2 has three different alternative
transcripts, but most of the functional studies only model the longest transcript. No studies have analyzed
TREM2 expression levels or alternative splicing in brains from AD and cognitively normal individuals. We
wanted to determine whether there was differential expression of TREM2 in sporadic-AD cases versus AD-
TREM2 carriers vs sex- and aged-matched normal controls; and if this differential expression was due to a
particular TREM2 transcript.

Methods: We analyzed RNA-Seq data from parietal lobe brain tissue from AD cases with TREM2 variants (n = 33), AD
cases (n = 195) and healthy controls (n = 118), from three independent datasets using Kallisto and the R package
tximport to determine the read count for each transcript and quantified transcript abundance as transcripts per million.

Results: The three TREM2 transcripts were expressed in brain cortex in the three datasets. We demonstrate for the first
time that the transcript that lacks the transmembrane domain and encodes a soluble form of TREM2 (sTREM2) has an
expression level around 60% of the canonical transcript, suggesting that around 25% of the sTREM2 protein levels
could be explained by this transcript. We did not observe a difference in the overall TREM2 expression level between
cases and controls. However, the isoform which lacks the 5′ exon, but includes the transmembrane domain, was
significantly lower in TREM2- p.R62H carriers than in AD cases (p = 0.007).

Conclusion: Using bulk RNA-Seq data from three different cohorts, we were able to quantify the expression level of
the three TREM2 transcripts, demonstrating: (1) all three transcripts of them are highly expressed in the human cortex,
(2) that up to 25% of the sTREM2 may be due to the expression of a specific isoform and not TREM2 cleavage; and (3)
that TREM2 risk variants do not affect expression levels, suggesting that the effect of the TREM2 variants on CSF levels
occurs at post-transcriptional level.
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Introduction
The Triggering Receptor Expressed in Myeloid cells 2
(TREM2) is a type 1 transmembrane receptor protein
expressed on myeloid cells including microglia,
monocyte-derived dendritic cells, osteoclasts and
bone-marrow derived macrophages [1, 2]. TREM2 pos-
sesses an immunoglobulin-like extracellular domain, a
transmembrane region and a short cytoplasmatic tail. In
the brain, it is primarily expressed by microglia and has
been shown to control two signaling pathways: regula-
tion of phagocytosis and suppression of inflammatory
reactivity [3, 4]. In the case of phagocytosis, there is a
very strong relationship between TREM2 and the
adaptor protein DAP12, also called TYROBP [5]. Homo-
zygous loss-of-function mutations in TREM2 or DAP12
cause a rare and fatal disease known as Nasu-Hakola
disease (NHD) or polycystic lipomembranous osteodys-
plasia with sclerosing leukoencephalopathy (PLOSL)
which is characterized by an early-onset frontotemporal
dementia-like phenotype and bone cysts [6, 7]. One of
the leading hypotheses to explain the pathology associ-
ated with NHD is that lack of activity of TREM2 or
DAP12 causes microglia inactivation and the accumula-
tion of necrotic debris from apoptotic neurons [8].
This relationship with NHD prompted an effort to

identify allelic variants in the TREM2 coding region that
could also confer risk to Alzheimer’s disease. In 2013,
several studies found that heterozygous expression of
TREM2 p.R47H [9–24] and p.D87N [15] variants were
significantly associated with AD risk. Other variants as-
sociated with the risk of AD include p.D87N [13, 15],
p.R62H [17, 24], p.L211P, p.T96K and p.H157Y [16, 17].
Among all these variants, p.R47H was validated in
neuropathological-confirmed cases [25] and was shown
to increase the risk for late onset AD to a similar extent
as the ApoE ɛ4 allele [15, 18]. However, the functional
impact of the variant is not completely understood. In
in-vitro studies, p.R47H has been shown to reduce the
binding of Aβ oligomers, APOE and phosphatidylserine
due to structural changes in TREM2 [26–29]. In in-vivo
studies, the expression of human p.R47H in Trem2
knockout mice suggested that the mutation confers a
loss-of-function phenotype [30]. In 2018, two independ-
ent studies [31, 32] generated Trem2 R47H knock-in
mice using CRISPR/Cas 9 technology. Both mice showed
reduced Trem2 mRNA and protein levels, however the
study from Xinag et al. [32] found that TREM2 mRNA
level in IPSC-derived human microglia-like cells and in
patients’ brains with p.R47H were normal.
Most of TREM2 AD-risk variants are located in exon

2, which codes for the Ig-like V type domain, suggesting
a possible modification in the interaction between
TREM2 and its ligands. Only two other risk variants as-
sociated to AD are located in different exons, p.H157Y

in exon 3 and p.L211P in exon 4 of the transcript that
encodes the soluble form of TREM2 [15]. Kober et al.
[33], presents an interesting hypothesis regarding loss of
function in TREM2. In NHD, the TREM2 protein is not
expressed, or it is expressed in a misfolded form that
does not appear in the membrane; either scenario leads
to a complete loss of function and a severe early-onset
dementia. In AD, the risk variants are expressed in the
cell membrane, but their binding capacity is lower than
that of the WT, leading to a partial loss of function caus-
ing a less severe late-onset dementia. This hypothesis
could explain why heterozygous NHD variants, includ-
ing p.Q33X, p.Y38C, and p.T66M, have been found in
rare AD cases in heterozygous sate [15].
In 2014, it was reported that there are at least three

TREM2 transcripts that are expressed in human brain
[17]. The first isoform, ENST00000373113, is the canon-
ical and the longest TREM2 transcript which consists of
five exons. This transcript has a transmembrane domain,
and it is the transcript that is normally modeled in func-
tional studies. The second isoform, ENST00000373122,
lacks exon 5, is the second longest transcript, and also
includes the transmembrane domain. Both isoforms are
anchored to the cell membrane due to their transmem-
brane domain, and both isoforms can undergo a sequential
proteolytic processing by disintegrin and metalloprotein-
ase domain-containing protein (ADAM) family, including
ADAM10 and ADAM17, leading to the shedding of the
ectodomain and producing a soluble TREM2 [34, 35]. The
third isoform, ENST00000338469, is the shortest with an
alternative spliced isoform that excludes exon 4. This iso-
form most likely encodes a soluble form of TREM2
(sTREM2) due to the lack of exon 4 which encodes the
transmembrane domain of the receptor.
A recent study [36] has shown the relevance of cere-

brospinal fluid (CSF) sTREM2 as a biomarker for AD
progression due to its elevation in AD patients. It is un-
known whether the sTREM2 is only the cleavage prod-
uct of the cell-surface expressed protein or also the
expression of the shortest soluble form.
The goal of this study is to quantify the expression

level of the three TREM2 transcripts in AD and control
brains, to determine whether there is differential expres-
sion of TREM2 in the three groups, sporadic-AD cases
(cases), AD-TREM2 (TREM2-carriers) carriers and con-
trols (controls) and finally to determine whether these
differences are due to the differential expression of a
particular TREM2 isoform.

Materials and methods
Subjects and samples
The number of participants is presented in Table 1; they
were grouped into three cohorts: Washington University
in St. Louis Knight-ADRC Brain Bank (51 participants),
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MSBB-BM36, (132 participants) and MCBB (162 partici-
pants) all of whom were European-Americans. Briefly,
the Knight-ADRC cohort included 15 participants with
late-onset AD (NIA-AA criteria: intermediate or high) [37]
with known risk variants in TREM2 gene (Table 2), 12
non-demented controls and 39 sporadic late-onset AD
cases. Because the variants p.D87N and p.R136W were as-
sociated with NHD and likely lead to neurodegeneration
through a different mechanism from that of the AD risk
variants, they were not used in the meta-analysis for

TREM2 carriers. For MSBB-BM36, the number of
non-demented control and sporadic late-onset AD cases
were 28 and 93, respectively, and a total of 11 AD cases car-
ried a TREM2 risk variant (see Table 2). In the case of
MSBB-BM36, there were 78 non-demented controls, 77
sporadic late-onset AD, and 7 AD cases with a TREM2 risk
variant (see Table 2). The RNA quality for samples in the
study was good, with an average RNA integrity (RIN) num-
ber over five in all the cohorts. The age of death was also
consistent in all cohorts, with a mean over 80 years old.

Table 1 Demographic Characteristics of study participants

Controls Alzheimer’s Disease Sporadic (Cases) TREM2-carriers

Knight-ADRC

No. of patients 12 24 15

Gender (% male) 33.3 45.8 53.3

Mean age at death (SD), years 90.1 (8.9) 85.1 (8.6) 84.5 (6.3)

Mean RIN (SD) 6.7 (1.2) 5.9 (1.4)) 6.8 (1.3)

APOE genotype (ε4+)% 8.3 45.8 53.3

Mount Sinai Brain Bank (MSBB-BM36)

No. of patients 28 93 11

Gender (% male) 50 32.3 45.5

Mean age at death (SD), years 80.9 (9.1) 84.4 (7.2) 84.3 (4.6)

Mean RIN (SD) 6.6 (1.1) 5.9 (1.5) 6.0 (1.7)

APOE genotype (ε4+)% 11.8 60 50

Mayo Clinic Brain Bank (MCBB)

No. of patients 78 77 7

Gender (% male) 51.3 42.9 14.3

Mean age at death (SD), years 82.5 (8.9) 82.3 (7.8) 81.6 (4.6)

Mean RIN (SD) 7.6 (1.0) 8.6 (0.6) 8.3 (0.3)

APOE genotype (ε4+)% 10.3 51.9 57.1

Table 2 Number of subjects with the TRME2 variants in each study

TREM2 Variants Knight-ADRC Mount Sinai Brain Bank (MSBB-BM36) Mayo Clinic Brain Bank (MCBB)

p.D87Na 1 0 0

p.G219C 0 0 0

p.R62C 0 1 0

p.E151K 0 0 0

p.H157Ya 1 0 0

p.L211P_T96K 1 0 0

p.R136Wa 1 0 0

p.R52H 1 0 0

p.L133 L 0 1 1

p.R47H 4 6 1

p.R62H 8 3 5
a Variants associated to NHD phenotype, when present on homozigous state
L211P_T96K: These two variants are in LD and are analyzed as a group
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Washington University in St. Louis knight-ADRC brain
bank
Brain tissue was provided by the Washington University
in St. Louis Charles F. and Joanne Knight Alzheimer’s
Disease Research Center Brain Bank (Knight ADRC), all
cases were recruited as research participants and under-
went a standard battery of tests [38]. Clinical Dementia
Rating (CDR) scores were obtained and the estimated
CDR at the time of death was determined by telephone
interview [39]. Neuropathological assessment was under-
taken by NJC and RJP, with each case assessed using the
NIA-AA neuropathologic diagnostic criteria. Additional
postmortem data including post-mortem interval and
brain weight were also available [40].
From these clinically and neuropathologically well-

characterized cases [41], one to two grams of frozen
(−80C) parietal lobe tissue (inferior parietal lobe) was
dissected and made available for this study. For each
case, post-mortem consent for a brain-only autopsy
brain was obtained and was approved by Washington
University in St. Louis institutional review board. Briefly,
RNA was extracted from frozen brain tissues using the
Tissue Lyser LT and RNeasy Mini Kits (Qiagen, Hilden,
Germany) following the manufacturer’s instructions.
RIN and DV200 were measured with the RNA 6000 Pico
Assay on the Bioanalyzer 2100 (Agilent Technologies).
The RIN is determined by the Bioanalyzer, taking into
account the entire electrophoretic trace of the RNA in-
cluding the presence or absence of degradation products.
All the RIN values were acceptable for further analysis.
The DV200 value is defined as the % of nucleotides
greater than 200 nt. Each sample yield was determined
by the Quant-iT RNA Assay (Life Technologies) on the
Qubit Fluorometer (Fisher Scientific). The cDNA librar-
ies were prepared with the TruSeq Stranded Total RNA
Sample Prep with Ribo-Zero Gold kits (Illumina) and
then sequenced by HiSeq 4000 (Illumina) at the McDon-
nell Genome Institute, Washington University in St. Louis.
RNA-seq paired end reads with a read length of 2 × 150
bp were generated using Illumina HiSeq 4000 with a mean
coverage of 80 million reads per sample.

Mayo Clinic brain Bank (MCBB)
Mayo Clinic Brain Bank RNA-seq data was downloaded
from the AMP-AD portal (synapse ID = 5,550,404;
accessed January 2017). Paired end reads of 2 × 101 base
pairs were generated by the Illumina HiSeq 2000
sequencer, for an average of 134.9 million reads per sam-
ple. RNA-seq based transcriptome data was generated
from post-mortem brain tissue collected from the cere-
bellum (273 samples) and temporal cortex (275 samples)
of Caucasian subjects. For this study, the temporal
cortex samples were chosen. RNA was extracted using
Trizol® and cleaned with the Qiagen RNeasy kit. RIN

measurements were performed with Agilent Technolo-
gies 2100 Bioanalyzer. Libraries were prepared by the
Mayo Clinic Medical Genome Facility Gene Expression
and Sequencing Cores with the TruSeq RNA Sample
Prep Kit (Illumina).

Mount Sinai brain Bank (MSBB)
Mount Sinai Brain Bank RNA-seq data was downloaded
from the AMP-AD portal (synapse ID = 3,157,743;
accessed January 2017). Single end reads of 100 nucleo-
tides were generated by the Illumina HiSeq 2500 System
(Illumina, San Diego, CA), for an average of 38.7 million
reads per sample. (Bank, 2016 #3723). It contains 1030
samples collected from four post-mortem brain regions
of 300 subjects: the anterior prefrontal cortex (BM10),
the superior temporal gyrus (BM22), parahippocampal
gyrus (BM36), and the inferior frontal gyrus (BM44).
RNA-seq was generated using the TruSeq RNA Sample
Preparation Kit v2 and Ribo-Zero rRNA removal kit
(Illumina, San Diego, CA) [https://www.synapse.org/
#!Synapse:syn3157743]. The parahippocampal gyrus
(BM36) is a cortical region in the medial temporal lobe
that projects to surrounds the hippocampus and plays
an important role in both spatial memory [42] and navi-
gation [43, 44]. For this reason, BM36 was selected for
further analysis for this study.

TREM2 variant calling
For Knight ADRC, TREM2 was sequenced using
pooled-DNA sequencing designed as described previ-
ously [45]. All polymorphisms were validated by Seque-
nom and KASPar genotype for each individual included
in the pool. For Mayo and the Mount Sinai datasets,
TREM2 variant calling was performed separately for 30X
WGS as described before [46–48], following GATK’s 3.6
Best Practices (https://www.broadinstitute.org/gatk/)
Variants were called in a region defined by the capture
targets of the Agilent SureSelect Human All Exon V5
Kit, plus 100 bp of padding added to each capture target
end. WGS data was filtered to remove low complexity
regions, and regions with excessive depth. Only those
variants that scored above the 99.5% confidence thresh-
old were considered for analysis; additional variant filters
included allele-balance (AB = 0.3–0.7). We also per-
formed variant calling in the RNA-seq to determine if
the TREM2 variants were expressed. We confirm that in
all cases the alternative allele is expressed validating the
genotypes for all individuals.

RNA-seq expression quantification
FastQC [49] was used to assess sequencing quality. The
RNA-seq was aligned to the human GRCh37 primary
assembly using STAR (ver 2.5.2b). Read alignments were
further evaluated by using PICARD CollectRnaSeqMetrics
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(ver 2.8.2) to examine read distribution across the gen-
ome. We employed Kallisto (v0.42.5) [50] and tximport
[51] to determine the read count for each transcript and
quantified transcript abundance as transcripts per kilobase
per million reads mapped (TPM), using gene annotation
of Homo sapiens reference genome (GENCODE GRCh37)
for each participant from Knight-ADRC, MCB and
MSBB-BM36 independently, with the following parame-
ters: -t 10 -b 100. Then we summed the read counts and
TPM of all alternative splicing transcripts of a gene to
obtain gene expression levels. Due to the positive skew-
ness of TPM values, we calculate their logarithm10
(log10TPM) for further analysis.

Immunoprecipitation
Immunoprecipitation was performed as previously de-
scribed [52]. In brief, brain tissue were lysed in T-PER
buffer (Thermo Scientific) and 1X Protease Inhibitor
Cocktail (Sigma-Aldrich). Brain homogenate were pre-
cleared for 1 h at 4 °C with 20 uL of Pierce™ Protein G
Agarose (Thermo Scientific). TREM2 protein was
immunoprecipitated overnight at 4 °C with 5 μg of puri-
fied mouse monoclonal anti-TREM2 antibodies directed
against the extra-cellular portion of human TREM2 pro-
tein (clone 20G2 and 29E3). 20 μL of Protein G agarose
were added to the antigen-antibody complex and incu-
bated for 2 h at room temperature. Precipitates were
washed four times in cold phosphate buffer saline (PBS)
with protease inhibitors (Sigma-Aldrich). SDS gel-load-
ing buffer was added to the complex-bound resin, incu-
bated for 5 min at 95 °C, separated by SDS–PAGE,
transferred to PVDF membranes (BIO-RAD) and probed
with the mouse anti-TREM-2 mAbs supernatants
(clones 10B11 and 21E10). Densitometric semi-quantifi-
cation was performed using ImageJ software (National
Institutes of Health) [53].

Statistical analysis
We employed a linear regression model to test the associ-
ation between the log10TPM and each comparison group
(R Foundation for Statistical Computing, ver.3.3.3) for the
Knight-ADRC, MCBB and MSBB (BM36) cohorts. RIN
number, age at death and gender were used as covariates
for each analysis. All studies showed different absolute
log10TPM values, due to the different library preparation
or brain region. Therefore, for the meta-analysis, we used
Stouffer’s Z-score method, which is based on Z-scores ra-
ther than p-values, allowing incorporation of study weights
based on the sample size for each cohort. The definition of
statistical significance was nominal P-value (p < 0.05) and
the same direction of effects (that is, the sign of β) in each
study to avoid discounting true positive associations.

Results
All three TREM2 transcripts are highly expressed in
human cortex
We first wanted to determine whether TREM2 transcripts
are expressed in the brain cortex, then to quantify each
transcript to determine their relative abundance and pos-
sible importance. In order to be able to combine and com-
pare expression levels across datasets, we normalized the
log10TPM using the mean expression of the longest tran-
script as a reference. Log10TPM counts and analyses re-
sults can be found in the Additional file (Additional file 1:
Table S1). We found that the canonical TREM2
(ENST00000373113) transcript has significantly higher ex-
pression than the other two transcripts (p = 1.13 × 10− 120

and 4.76 × 10− 107, respectively, Fig. 1, Tables 3 and 4). The
transcript that encodes the soluble TREM2 isoform
(ENST00000338469) had the second highest expression
level, and it is expressed at 62% of the canonical transcript.
The transcript with the lowest expression level is the tran-
script that encodes a shorted transmembrane protein
(ENST00000373122) and is expressed at 58% of the level
of the canonical transcript. This transcript also showed a
significantly lower level of expression than the transcript
that encodes the soluble form (p = 0.0003).
We also performed similar analyses for stratified by

case-control status, and for each dataset, separately. The
expression levels were very consistent across datasets
and independent of case-control status (Fig. 1, Tables 3
and 4). The relative expression of the transcript that
encodes the soluble form (ENST00000338469) ranges
from 53 to 65% of that of the canonical transcript
(ENST00000373113) and for the ENST00000373122
transcript, expression ranges from 55 to 61%. This data
confirms that the three isoforms are expressed and that
does not correlate with case-control status, and that up
to 25% of the extracellular sTREM2 could be due to the
expression of the ENST00000338469 isoform and not a
product of TREM2 cleavage.

Correlation with protein levels
In order to determine if the transcript levels correlate
with protein levels, we quantified TREM2 protein
levels by Western Blot on 10 parietal brain samples
from the Knight-ADRC that RNA-seq data was also
available. We detected two bands (Additional file 1:
Figure S1); the 50kD band correspond to the full
length TREM2 [34]. The second band located ~30kD,
which matches to the sTREM2 found in cerebrospinal
fluid [52]. Then, we quantified the band correspond-
ing to the sTREM2 band and analyzed if there was a
correlation with the sTREM2 band with the different
transcripts. We found a very strong correlation be-
tween the sTREM2 band vs the total mRNA TREM2
levels (R2 = 0.77 p < 0.05). We also found that the
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sTREM2 band shown a correlation with the canonical
isoform (R2 = 0.73 p < 0.05) and the isoform that
codify for the soluble transcript (R2 = 0.42 p < 0.05),
but not for the other transcript (R2 = -0.13 p > 0.05).

TREM2 expression levels are not affected by disease
status
Since CSF sTREM2 levels are significantly different in
AD cases vs controls, our next step was to determine

whether the overall TREM2 gene expression and its
transcript specific expression were associated with
case-control status. For these analyses, TREM2 carriers
were not included. The overall TREM2 expression levels
were higher in AD cases compared to controls, but this
difference was not statistically significant (p = 0.11,
Table 5). Similar results were found for the canonical
transcript. However, we found a nominal association
between the transcript that encodes sTREM2, in which

Fig. 1 Relative quantification of the expression of each isoform in Alzheimer’s disease cases, controls and TREM2 risk variant carriers. Total log10 RNA
count was calculated using Kallisto and the results were expressed relative to the log10RNA counts of the common transcript ENST00000373113.
There is a clear overlapping distribution for each of the studies, the yellow line represents the mean overall value for each transcript among the
different studies. There were different expression counts among the different transcripts (see Table 5)

Table 3 Relative quantification of the expression of each isoform with ENST00000373113 as control

Study Conditions ENST00000373113 (canonical transcript) ENST00000373122 ENST00000338469 (soluble TREM2)

All Control + Case 1.00 0.58 0.62

Control 0.97 0.56 0.62

Case 1.02 0.58 0.63

Knight-ADRC Control + Case 1.00 0.61 0.60

Control 0.97 0.56 0.53

Case 1.01 0.64 0.63

MSBB-BM36 Control + Case 1.00 0.56 0.61

Control 0.94 0.55 0.60

Case 1.02 0.56 0.61

MCBB Control + Case 1.00 0.58 0.64

Control 0.98 0.57 0.63

Case 1.02 0.60 0.64

ENST00000373113 canonical transcript
ENST00000373122
ENST00000338469 soluble TREM2
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AD cases have higher transcript levels (p = 0.04, Table 5).
These results were consistent across datasets replicating
this finding (Additional file 1: Tables S2-S4).

TREM2 risk variants do not affect TREM2 expression levels
or disease status
We also decided to analyze whether the TREM2 risk var-
iants (mainly p.R47H and p.R62H) were associated with
TREM2 expression levels. We also included some vari-
ants that in homozygosity cause NHD, although in this
study all the individuals with NHD variants are in a
heterozygous state. NHD variants are loss-of-function
variants that lead to very low TREM2 cell surface ex-
pression and low sTREM2 levels [36]. AD risk variants

have also been postulated to be partial loss-of-function.
Although, it is known that the loss-of-function for the
NHD variants requires a post-transcriptional event, we
wanted to confirm that these NHD or AD-risk variants
have no effect at the mRNA level. We found that NHD
variant-carriers have similar TREM2 expression levels to
AD cases, controls and other TREM2 variants (Fig. 2).
We also did not see any specific TREM2 transcript effect
for the NHD variants. All the transcripts were expressed
at similar levels than in non-mutation carriers.
Then, we determined if the overall TREM2 or specific

transcript levels were significantly different between
TREM2 variant carriers (any TREM2 variant) and cases
or controls. We did not find any significant association,

Table 4 Wilcoxon test for unpaired two independent groups

Study Conditions ENST00000373113 vs
ENST00000373122

ENST00000373113 vs
ENST00000338469

ENST00000373122 vs
ENST00000338469

All Control +
Case

1.13 × 10− 120 4.76 × 10−107 0.0002

Control 1.57 × 10−43 2.61 × 10−35 0.0090

Case 1.86 × 10−79 2.80 × 10−74 0.0095

Knight-
ADRC

Control +
Case

2.16 × 10−12 3.39 × 10−11 0.6423

Control 6.66 × 10−05 0.0003 0.4789

Case 1.07 × 10−07 1.58 × 10− 07 0.7850

MSBB-BM36 Control +
Case

2.99 × 10e−40 1.95 × 10−38 0.0291

Control 6.20 × 10−08 3.86 × 10−07 0.3969

Case 1.86 × 10−34 2.79 × 10− 33 0.0475

MCBB Control +
Case

1.99 × 10−72 2.16 × 10−61 0.0003

Control 1.04 × 10−33 3.43 × 10− 26 0.0051

Case 9.33 × 10−43 9.98 × 10− 39 0.0238

Table shows the p-value for the test comparison among studies and each isoforms:
ENST00000373113 canonical transcript
ENST00000373122
ENST00000338469 soluble TREM2

Table 5 TREM2 is similarly expressed in AD, controls and TREM2 risk variant carriers

Overall TREM2 ENST00000373113 (canonical transcript) ENST00000373122 ENST00000338469 (soluble TREM2)

Control vs Case 0.11 0.2 0.19 0.04c

Control vs TREM2-carriers 0.40 0.39 0.31 0.39

Case vsTREM2-carriers 0.11 0.26 0.19 0.15

Control vs p.R47Ha 0.33 0.34 0.15 0.06

Case vs p.R47Ha 0.24 0.38 0.35 0.11

Control vs p.R62H 0.41 0.48 0.06b 0.25

Case vs p.R62H 0.17 0.20 0.007b 0.22

Table shows the p–value for the meta-analysis for Knight-ADRC, Mayo Clinic Brain Bank and Mount Sinai Brain Bank
Meta-analyses was performed using the Zscore Method
Statistical significant results with the same effect size direction are shown in red
aData only available for Knight-ADRC and Mount Sinai Brain Bank
bData only available for Knight-ADRC and Mayo Clinic Brain Bank
cStatistically significant results but with different effect size directions
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Fig. 2 Overall TREM2 and transcript-specific expression in Alzheimer’s disease cases, controls and TREM2 risk variant carriers. Gene expression is
showed as a log10 TPM values. a Overall, (b) Mount Sinai Brain Bank (MSBB) –BM36 study, (c) Mayo Clinic Brain Bank study and (d) Knight-ADRC
study. Overall TREM2 refers to the total TREM2 expression of all the three transcripts

Del-Aguila et al. Molecular Neurodegeneration           (2019) 14:18 Page 8 of 13



although TREM2-carriers showed nominally significant
lower levels of the ENST00000373122 transcript
(shorter, transmembrane protein) compared to controls
(Fig. 2 and Table 5).
Finally, we performed specific analyses for the p.R47H

and p.R62H variants. We did not find any significant dif-
ference in the overall or transcript-specific TREM2 levels
for the p.R47H variant. On the other hand, we found
that the p.R62H variant carriers have significantly lower
expression of the second transmembrane TREM2 tran-
script (ENST00000373122) than cases (p = 0.007), and
have lower expression compared to controls, although
this difference is not statistically significant (Fig. 2 and
Table 5). We did not find any difference for the other
two transcripts or for the overall expression, suggesting
that this effect is transcript specific.

Discussion
Various studies suggest that TREM2 and its variants
contribute to the pathogenesis of AD [54], Parkinson’s
Disease [55], and Amyotrophic Lateral Sclerosis risk
[56]. However, it remains unclear if TREM2 is a pro- or
anti-inflammatory molecule [57]. For instance, in studies
in macrophages or microglia, TREM2 expression reduces
the inflammatory response [4, 58–60], while in dendritic
cells, TREM2 expression exacerbates the inflammatory
response [2, 61]. Due to these apparently conflicting
results, a hypothesis was developed in which TREM2
function depends on which cell type it is expressed.
Therefore, if the cells are part of the innate immune sys-
tem, TREM2 acts as an anti-inflammatory molecule, but
if they are part of the adaptive immune system, TREM2
acts as a pro-inflammatory molecule. Most of the
current research has been focused on TREM2 gene
expression levels and the TREM2 variants associated
with AD risk, however most of the studies have only
focused on the canonical transcript, and not the activity
or expression levels of the TREM2 isoforms. It is also
important to determine the expression levels of the three
TREM2 transcripts, as it is important to distinguish
between the expression of the soluble TREM2 isoform
(ENST00000338469) and the s TREM2 produced by
proteolytic cleavage. It is known that sTREM2 plays a
role in AD pathogenesis [54] and can be used as bio-
marker for AD. Interestingly, the results from these
studies shown that TREM2 levels are higher in AD indi-
viduals in CSF samples [36], which are consistent with
our results at mRNA levels. However, one of the three
TREM2 transcripts expresses a soluble form of TREM2
that could be also be released extracellularly and be part
of the overall pool of sTREM2 levels. Therefore, if we are
to understand the role of sTREM2 in disease, we need to
determine all the potential origins of this protein.

The expression of the three TREM2 transcripts in brain
was initially reported by Jin et.al [17]. In other studies, the
expression of the canonical transcript (ENST00000373113)
was the highest [62], followed by the transcript which
encodes soluble TREM2 (ENST00000338469) [63]. In this
study, we used a large cohorts, totaling 345 samples to
analyze not only the expression levels of the three TREM2
transcripts but also to determine the association of AD
case-control status and the TREM2 risk variants with the
expression levels.
We were able to detect and quantify the levels of three

TREM2 transcripts ENST00000373113, ENST000003
73122 and ENST00000338469 using RNA-seq data from
AD and control brains from three different, independent
studies. Our analyses indicate that the canonical tran-
script (ENST00000373113) is expressed at twice the
level of the other two other transcripts, and that this dif-
ference is very consistent across studies and between
cases and controls. Even with this, our results indicate
that the transcript that encodes sTREM2 represents the
25% of the total TREM2 mRNA suggesting that around
20–25% of the sTREM2 might be due to the expression
of this transcript and not the cleavage of the cell mem-
brane bound TREM2. In order to try to determine how
much of the sTREM2 is produced by each transcript, we
quantify total and sTREM2 from brain homogenates
using Western-blots. As expected, we found a strong
correlation of the sTREM2 band with the total TREM2
mRNA (R2 = 0.77 p < 0.05) and the canonical transcript
(R2 = 0.73 p < 0.05). But we also found a strong and sig-
nificant correlation with the transcript that codify for
the soluble TREM2 transcript (R2 = 0.42 p < 0.05). This
data supports that a proportion of the sTREM2 could be
the results of the expression of the transcript that codify
for the soluble isoform. However, there are several limi-
tations to this experiment. Antibody-based detection
assays are not able to distinguish between sTREM2 that
was generated by proteolytic processing [35] or by
alternative splicing [17]. Most of the epitopes used to
generate anti-TREM2 antibodies are located in the extra-
cellular portion of human TREM2 protein, which is
shared by both the proteolytic and the transcribed forms
[34, 35, 52, 64]. Therefore we are not able to determine
the transcript of origin of the sTREM2 protein. The sec-
ond limitation is that, because we quantified sTREM2
from brain homogenates, we can not distinguish
between the extra and intra-cellular sTREM2 proteins.
Therefore we cannot demonstrate that the sTREM2 pro-
tein produced by the soluble transcript is also present
extracellularly. In addition, the TREM2 in the membrane
is not all cleaved immediately. The actual proportion of
sTREM2 that is produced by the direct expression of the
ENST00000338469 transcript could be significantly
higher or lower than 25%. More refined and specialized
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experimental techniques are needed to determine the ori-
gin of the soluble and extracellular presence of sTREM2.
In any case, recent studies indicate that minor

changes in sTREM2 levels, of around 7–10% are
enough to modulate AD risk [54, 65]. Therefore
changes of expression levels by 25% should have a large
impact on AD risk. Additional research to understand
transcript specific TREM2 regulation and determine
the origin of sTREM2 are needed to fully understand
the biology of TREM2.
Two previous papers [31, 32], that generated Trem2

R47H knock-in mice using CRISPR/Cas 9 technology,
showed reduced Trem2 mRNA and protein levels,
although the same studies suggest that these results were
an artifact due to some unspecific events linked to the
genome editing. It is also known that NHD variants are
loss-of-function mutations. For instance, p.Y38C
disrupts the correct disulfide formation, p.T66M desta-
bilizes the protein expression and p.V126G disrupts
hydrophobic core of the protein. Furthermore, p.Y38
and p.V126 are conserved within the TREM family [33],
implying that they are probably required to preserve the
common fold within this family of receptors leading to
lower sTREM2 levels, due to post-transcriptional events.
On the other hand, variants p.R47H, p.R62H, p.N68K,
p.D87N and p.T96K lie on the protein surface and are
related to AD risk. Based on the location of these vari-
ants, we assumed that they would not affect surface ex-
pression and instead impact ligand binding [33]. Several
studies indicate that CSF TREM2 levels are increased in
AD risk variant p.R47H carriers, but in this case it is not
clear if this is post-transcriptional, at the mRNA level. In
our meta-analysis, the overall expression of TREM2 at
the gene level, and transcript-specific analyses in p.R47H
or NHD carriers, TREM2 and its isoforms were not sig-
nificantly differentially expressed when compared to
controls or AD cases, suggesting that the effects associ-
ated with the p.R47H variant are also at the post-tran-
scriptional level. On the other hand, our data indicate
the p.R62H carriers showed a significant level of the
ENST0000037312, which also encodes a transmem-
brane TREM2 isoform. This finding could explain
why TREM2 p.R62H carriers tend to have lower CSF
TREM2 levels [36, 54].

Conclusion
This study demonstrates that the three TREM2 tran-
scripts are highly expressed in human brains, and that
the transcript that encodes the soluble form of TREM2
might represent up to 25% of the soluble TREM2.
Therefore, our results indicate that this transcript may
play an important role in disease, and additional studies
are needed to functionally characterize the rol of this
transcript in disease. The implication of this transcript

in AD pathogenesis is also supported by the presence of
AD risk variant that are only present in the transcript
that codifies for the soluble form. [17]. Thus in order to
understand the biology of TREM2, it is important to
perform functional studies and create cell and animal
models that interrogate the three transcripts, not only
the canonical transcript.
In this study, we were able to demonstrate the expres-

sion of the three transcripts of TREM2 in postmortem
human brain, including the soluble transcript that does
not include a transmembrane domain. We also found
the AD-risk variants influenced the expression of
specific transcripts.
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