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Abstract

Deposition of amyloid plaques in the brain is one of the two main pathological hallmarks of 

Alzheimer’s disease (AD). Amyloid positron emission tomography (PET) is a neuroimaging tool 

that selectively detects in vivo amyloid deposition in the brain and is a reliable endophenotype for 

AD that complements cerebrospinal fluid biomarkers with regional information. We measured in 
vivo amyloid deposition in the brains of ~1,000 subjects from three collaborative AD centers and 

ADNI using 11C-labeled Pittsburgh Compound-B (PiB)-PET imaging followed by meta-analysis 

of genome-wide association studies, first to our knowledge for PiB-PET, to identify novel genetic 
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loci for this endophenotype. The APOE region showed the most significant association where 

several SNPs surpassed the genome-wide significant threshold with APOE*4 most significant (P-

meta=9.09E-30; β=0.18). Interestingly, after conditioning on APOE*4, 14 SNPs remained 

significant at P<0.05 in the APOE region that were not in linkage disequilibrium with APOE*4. 

Outside the APOE region, the meta-analysis revealed 15 non-APOE loci with P<1E-05 on nine 

chromosomes, with two most significant SNPs on chromosomes 8 (P-meta=4.87E-07) and 3 (P-
meta=9.69E-07). Functional analyses of these SNPs indicate their potential relevance with AD 

pathogenesis. Top 15 non-APOE SNPs along with APOE*4 explained 25%−35% of the amyloid 

variance in different datasets; of which 14–17% was explained by APOE*4 alone. In conclusion, 

we have identified novel signals in APOE and non-APOE regions that affect amyloid deposition in 

the brain. Our data also highlights the presence of yet to be discovered variants that may be 

responsible for the unexplained genetic variance of amyloid deposition.
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INTRODUCTION

Genomic efforts mainly through large-scale genome-wide association studies (GWAS), as 

part of the Alzheimer’s Disease Genetics Consortium (ADGC)1 and the International 

Genomics of Alzheimer’s Project (IGAP)2 have identified over 20 genes/loci for late-onset 

Alzheimer’s disease (AD). However, known common AD variants account for only ~30% of 

the AD genetic variance3 and they also do not provide definitive information about 

underlying disease mechanisms. Genetic studies focusing on AD-related quantitative 

phenotypes/endophenotypes may help to identify additional AD-related genes. One such 

AD-related phenotype is deposition of amyloid-beta (Aβ) in the brain, which is one of the 

two main pathologic hallmarks of AD; the other being the formation of tau deposits in the 

form of neurofibrillary tangles, neuropil threads and dystrophic neurites (tau pathology) in 

the brain.4 According to the current model for sporadic AD, Aβ pathology occurs 

independently of tau pathology, is detectable earlier and is believed to accelerate neocortical 

tau pathology and neurodegeneration.5 Recent longitudinal studies on cognitively normal 

subjects also confirm that amyloidosis is an early process in AD.6, 7 The in vivo detection of 

Aβ deposition in the brain, as measured by positron emission tomography (PET) scanning 

with 11C-labeled Pittsburgh Compound-B (PiB) and the increased retention of PiB observed 

in the brains of AD patients compared to cognitively normal controls, was first reported by 

Klunk and colleagues8, 9 and since has been confirmed in many studies.10 There is a high 

correlation between amyloid PET imaging and neuritic plaque frequency as confirmed by 

autopsy studies.11–13 Multiple studies have shown that amyloid PET has a high value for the 

clinical diagnosis of AD and in clinical trials aiming to reduce brain Aβ burden.14

There is a well-established association of APOE variants with risk1, 2 and age-at-onset15, 16 

of AD. Likewise, APOE genetic variation is also strongly associated with Aβ deposition in 

the brain as measured by PiB retention,17–19 indicating a genetic basis of Aβ deposition in 

the brain. Here, we used PiB-PET as an endophenotype to identify novel genetic loci for AD 
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pathology using meta-analysis of three GWAS, the first to our knowledge, using the largest 

sample with the PiB-PET imaging from three different centers and the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI).

MATERIALS AND METHODS

Sample description

All subjects with PiB-PET data were European-Americans and derived from three sites: 

University of Pittsburgh (PITT), Washington University (WU) and Indiana University (IU) 

combined with the initial phase of the multicenter ADNI PiB-PET add-on study (here they 

are referred to as ADNI/IU). All subjects provided informed consent and all studies were 

approved by their local Institutional Review Boards. The summary statistics of these 

samples are included in Supplementary Table S1 and their description is given 

Supplementary Text.

Amyloid-PET data

Detailed methods for acquisition and processing of PiB-PET scans are described in previous 

reports for the PITT,17, 18 WU,19 ADNI20–22 and IU23 studies. PiB retention was measured 

in 4 cortical regions of the brain, including medial frontal cortex (MFC; anterior cingulate/

gyrus rectus), lateral frontal cortex (LFC), precuneus cortex (PRC) and parietal cortex (PAR) 

and expressed as a ratio to the cerebellum. In the GWAS meta-analysis, the PiB retention 

values from these 4 cortical regions were averaged in each subject to calculate a mean global 

score (GBL4) as the quantitative endophenotype. PiB retention was expressed as 

standardized uptake volume ratio (SUVR) in the PITT and ADNI/IU data23, 24 and as 

binding potential (BP) in the WU data.25 BP is approximately equal to SUVR-1. Because of 

this inconsistency in the PiB measurement methods the GWAS data were analyzed via P-

value based meta-analysis as described below.

Genotyping, imputation and quality control

The genotyping platforms used for each study sample are listed in Supplementary Table S1. 

Imputation of non-genotyped single-nucleotide polymorphisms (SNPs) was performed with 

IMPUTE226 using the 1000 Genomes Project27 Phase III (May 2013 release) data as the 

reference panel for PITT and Phase I (November 2010 release) data for WU and ADNI/IU 

datasets. Full description of these procedures is given in Supplementary Text.

Meta-analysis

METAL28 software was used to perform meta-analysis on three GWAS using the mean PiB-

PET GBL4 value. METAL performs a P-value based meta-analysis, which is appropriate 

when the effects being estimated are different in different cohorts. It does, however, account 

for differences in sample size between cohorts and for the direction of effects. The summary 

effect size was calculated by averaging the study-specific effect sizes, with weights 

reflecting the standard errors from the study-specific effect sizes.
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Functional analyses

To evaluate the biological significance of PiB-associted signals, we conducted five different 

analyses: differential gene expression in AD versus non-AD in relevant tissues, brain gene 

expression, expression quantitative trait loci (eQTL) analyses, summary-data-based 

Mendelian randomization (SMR) analyses to test for pleiotropic association between gene 

expression and PiB, and pathway analyses. Detailed description of these analyses is given in 

Supplementary Text.

RESULTS

Amyloid PET data characteristics

The characteristics of participants in each of the three datasets included in the meta-analysis 

are shown in Supplementary Table S1. The WU sample was younger with less male 

participants. The distribution of mean global PiB retention is shown in Figure 1.

GWAS Analysis

Quantile-quantile (QQ) plots and lambda values for the meta-analysis showed that neither 

the results from each of the three component studies nor the combined results from meta-

analysis were inflated in their test statistics (Figure 2a). Meta-analysis revealed 27 genome-

wide significant SNPs (P<5E-08) in a four-gene region on chromosome 19: PVRL2-
TOMM40-APOE-APOC1(Figure 2b, and Supplementary Table S2). As expected, APOE*4/

rs429358 showed the most significant association with the average global PiB retention (P-

meta=9.09E-30; β=0.18; Figure 3, Supplementary Figure S1).

Outside of the APOE region, no genome-wide significant signal was observed. However, the 

meta-analysis revealed 15 non-APOE loci with P<1E-05 on chromosomes 8, 3, 15, 4, 21, 13, 

2, 12 and 1 (Table 1). Most of these loci show quite consistent results across the all datasets. 

The regional plots of these 15 non-APOE loci are shown in Supplementary Figures S2.1-

S2.15. The most significant SNP outside the APOE region is intergenic located between 

ADCY8 - EFR3A on chromosome 8 (rs13260032; P=4.87E-07, Supplementary Figure 

S2.1). The next most significant SNP is also intergenic located between RAP2B - C3orf79 
on chromosome 3 (rs4680057; P=9.69E-07, Supplementary Figure S2.2). Chromosome 3 

also harbors two additional signals: one in ncRNA (LINC00971/rs9831119; P=2.98E-06, 

Supplementary Figure S2.6) and another near MAGEF1/ rs11923588 (P=5.66E-06, Figure 

S2.9). The third most significant SNP is located in the DAPK2 gene on chromosome 15 

(rs12908891; P=1.39E-06, Supplementary Figure S2.3). We also analyzed the data after 

adjusting for the effect of APOE*4/rs429358 in these non-APOE regions, which showed a 

slight attenuation of the association strengths (Table 1).

Conditional Analysis in the APOE Region

In order to check if there were independent SNPs associated with the PiB retention in the 

APOE region, we performed conditional analysis by adjusting for the top SNP (APOE*4/

rs429358). A total of 14 SNPs remained significant at P<0.05 (Table 2), including 3 SNPs 

that showed genome-wide significance before adjusting for APOE*4 (rs75627662, rs483082 

and rs438811; Supplementary Table S2). Supplementary Figure S3 shows LD structure of 
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these 14 SNPs along with APOE*4/rs429358 and APOE*2/rs7412 SNPs. APOE*4 and 

APOE*2 have essentially no LD with 9 of the 14 SNPs that are located in the PVRL2 gene 

(SNPs 1–9 in Supplementary Figure S3). One SNP located in the APOE/APOC1 intergenic 

region (rs59325138) has only very weak correlation with APOE*4 (R2=0.15) and APOE*2 
(R2=0.03). While 3 SNPs located down stream of APOE and APOE/APOC1 intergenic 

region have weak to moderate LD with APOE*4 (R2=0.42, 0.64, 0.65 for rs75627662, 

rs483082 and rs438811, respectively).

The most significant SNP in meta-conditional analysis was APOE*2/rs7412 (P-

meta=3.69E-03; β=−0.06; Table 2), though it was not genome-wide significant before 

adjusting for APOE*4 (P-meta=6.57E-05; β=−0.09). A similar strength of association was 

seen with an intronic PVRL2/rs3852859 SNP after adjusting for APOE*4 (P-meta=8.8E-03; 

β=0.06; Table 2) that was in LD with 3 additional SNPs (SNPs 1, 7, 9 in Supplementary 

Figure S3). Three additional apparently independent associations were seen with rs4803767 

(P-meta=2.06E-02; β=0.05 Table 2) that was in LD with 4 additional SNPs (SNPs 2–5 in 

Supplementary Figure S3), rs75627662 (P-meta=1.50E-02; β=−0.03; Table 2) that was in 

LD with 2 additional SNPs (SNPs 13,15 in Supplementary Figure S3) and rs59325138 (P-

meta=3.10E-02; β=0.03; Table 2) that has very weak correlation with all other SNPs 

(R2=0.01– 0.24).

Association of known AD risk loci with amyloid burden and Association of amyloid loci 
with AD risk

We examined the top IGAP genome-wide significant SNPs (Supplementary Table S3.1) and 

the associated gene regions (Supplementary Table S3.2) in relation to amyloid burden and 

found only some nominally significance SNPs. Likewise, we examined the suggestive non-

APOE amyloid loci in our PITT-ADRC case-control sample of >2,200 subjects29 and found 

association of two top amyloid-associated SNPs with AD risk (Supplementary Table S4.1). 

When we examined additional Aβ-associated SNPs in each region with AD risk, we found 

multiple associations with P<0.05 (Supplementary Table S4.2), indicating that our 

suggestive Aβ-associated loci are also associated with AD risk (see Supplementary Text for 

more details).

Estimation of Amyloid-PET variance by APOE and non-APOE loci

The genetic variance was estimated based on the R-square calculated from a linear 

regression model regressing global PiB retention on 6 independent APOE SNPs (rs429358, 

rs7412, rs3852859, rs4803767, rs75627662, rs59325138), as described above, and 15 non-

APOE SNPs given in Table 1. The contribution of 6 APOE SNPs to the variance of global 

PiB retention was 28.0%, 17.3% and 17.12% in the PITT, WU and ADNI/IU datasets, 

respectively; APOE*4/rs429358 alone explained 17.5%, 16.5% and 13.9%, respectively. The 

top 15 non-APOE SNPs explained 22.6%, 21.6% and 21.7% of the amyloid variance in the 

PITT, WU and ADNI/IU datasets, respectively. The consistency of these estimates across the 

different datasets gives confidence that the difference in measurement of PiB across the 

datasets does not affect the bottom-line results.
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Functional analyses

We performed five analyses (see Methods section) to evaluate the biological significance of 

PiB-implicated signals/genes. We considered all genes within ±500kb of the top variant in 

each locus from Table 1 plus any eQTL-controlled genes outside the ±500kb boundary as 

target genes (Figure 3, Supplementary Figures S2.1-S2.15), and selected a total of 257 

genes.

Of 257 target genes, we found 20 upregulated and 25 downregulated genes that were 

differentially expressed in the same direction in two or more AD studies and no opposite 

directions were reported (Table 3 and Supplementary Table S6 marked in green color). Brain 

RNA-seq data reveals many of these differentially expressed candidate genes are expressed 

in AD-relevant cell types (Table 3 and Supplementary Table S6 marked in yellow color).

For eQTL analyses, we identified SNPs in LD (R2 ≥ 0.5) with the top SNP for each locus in 

Table 1. For these SNPs, there were cis-acting eQTLs (eQTL P <0.05) for 151 of the 257 

target genes in various brain tissues, and 36 genes in whole blood available in GTEx. 

Supplementary Table S5 gives the eQTL results for each top SNP in 15 non-APOE loci and 

the detailed results of LD SNPs (R2≥0.80) with top SNPs are given in Supplementary Table 

S7. With the exception of SLITRK1 /rs9831119, the other 14 top SNPs were eQTLs in 

different brain regions; 11 of them were eQTL in anterior cingulate cortex/frontal cortex/

cortex where PiB intake is highest,30 indicating their role in affecting amyloid deposition in 

the brain.

For SMR analyses, only the gene/variant pairs identified in the cis-eQTL analyses were 

considered. For these gene/variant pairs, 99 genes in any brain tissue and 19 in whole blood 

were shown to mediate genetic effects on PiB by cis-regulating gene expression (SMR P 
<0.05; Table 3, Supplementary Table S6).

We conducted pathway analyses (MAGMA31) using four gene set resources, including and 

excluding target genes in the APOE region, and detected nine genome-wide significant 

pathways: ndkdynamin pathway, FDR= 4.6E-04; synaptic vesicle recycling, FDR= 3.5E-07; 

synaptic vesicle endocytosis, FDR= 3.1E-04; protein depolymerization, FDR= 3.1E-04; 

inositol tetrakisphosphate phosphatase activity, FDR= 5.7E-03; positive regulation of 

vacuole organization, FD = 5.7E-03; inositol trisphosphate phosphatase activity, FDR= 

0.033; regulation of clathrin-mediated endocytosis, FDR= 0.038; and clathrin-mediated 

endocytosis, FDR = 0.043. Although none of the 257 target genes, including APOE, are 

included in these nine genome-wide significant pathways, 71 target genes are included in the 

nominally significant pathways and 46 target genes are included in the non-APOE region-

related nominally significant pathways (P < 0.05. Table 3 and Supplementary Table S6 

marked in pink color).

DISCUSSION

In this investigation, we have used the largest PiB-PET imaging data (n=~1,000), available 

from multiple collaborative centers, as an endophenotype to identify novel genetic loci for 
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AD pathology using the GWAS meta-analysis approach, the first to our knowledge for PiB-

PET.

The APOE region showed the most significant association where several SNPs surpassed the 

genome-wide significant threshold (P<5E-08) with APOE*4 as the top hit that was 

associated with higher PiB retention in the brain (P-meta=9.09E-30; β=0.18). APOE*2, a 

protective genetic factor against AD, was associated with lower PiB retention, albeit, not 

genome-wide significant (P-meta=6.57E-05; β=−0.09). This observation is consistent with 

earlier reports of the association of the APOE* 2/3/4 polymorphism with Aβ deposition in 

the brain as measured by PiB-PET17–19 or florbetapir-PET.32 Likewise, a GWAS of 

cerebrospinal fluid (CSF) Aβ has identified a genome-wide significant SNP that was a proxy 

for APOE*4.33 Numerous prior studies have investigated the role of the APOE* 2/3/4 
polymorphism on Aβ production, aggregation and clearance in the brain,34 but recent 

studies provide solid mechanistic clues into the role of APOE genetic variation in affecting 

APP transcription and Aβ production,35 and seeding of amyloid pathology.36 In addition to 

the APOE*2/3/4 association, conditional analysis on APOE*4 identified 14 independent 

signals in the APOE region that also affect brain amyloidosis. Nine of 14 SNPs had 

essentially no LD with APOE*4 and APOE*2 and the remaining 5 showed moderate to 

weak LD with APOE*4. Thus, our meta-analysis indicates the presence of additional signals 

in the APOE region, beyond the APOE*4/rs429358 and APOE*2/rs7412 SNPs, that affect 

Aβ deposition in the brain.

Outside the APOE region, the meta-analysis revealed 15 suggestive non-APOE loci with 

P<1E-05 on nine chromosomes. Although they do not meet the established genome-wide 

significance criteria, their consistent and directional associations in three independent 

datasets (Table 1) suggest that at least some of them are likely candidate loci for brain 

amyloidosis process and/or AD risk and variants in these loci may have achieved the 

genome-wide significance threshold in larger datasets. Credence to this idea was provided 

by our observation that most of these suggestive loci were also associated with AD risk 

when we examined the Aβ-associated SNPs in a published AD GWAS29 (Supplementary 

Tables S4.1-S4.2). The most significant non-APOE SNP (rs13260032; P=4.87E-07) on 

chromosomes 8 is intergenic, and this was an eQTL for a nearby ADCY8 gene in frontal 

cortex, which is one of the highest PiB uptake cortical regions.30 ADCY8 is essential to 

long-term potentiation and synaptic plasticity and is implicated in memory and learning.37 

Genetic variation in or around ADCY8 has shown to be associated with dissociation 

symptoms in subjects with posttraumatic stress disorder,37 abdominal visceral38 and alcohol-

dependent depression.39 The second top SNP (rs4680057; P=9.69E-07) resides near C3orf79 
and was an eQTL for a nearby long noncoding RNA (lncRNA) gene in anterior cingulate 

cortex and hippocampus in the brain and for ARHGEF26 in blood. lncRNAs play a critical 

role in gene regulatory networks and may affect diverse biological processes and diseases,40 

including AD where several IncRNAs have been shown to regulate Aβ production/

generation.41, 42 A recent GWAS has identified ARHGEF26 as a new genetic factor for 

coronary artery disease risk that influences the transendothelial migration of leukocytes.43 

The third top SNP (rs12908891; P=1.39E-06) is located DAPK2 on chromosome 15 that 

belongs to a family of related serine/threonine kinases shown to be involved in multiple 

functions, including apoptosis, autophagy, tumor suppression and inflammation.44 Although 
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the role of DAPK2 in amyloidosis in unknown, another family member, DAPK1, promotes 

the phosphorylation and amyloidogenic processing of APP.45 The DAPK2 region contains 

other candidate genes, such as GSNK1G1 and TRIP4. While TRIP4 is a known gene for 

AD,46 GSNK1G1 has been implicated in the formation of Aβ.47 The top SNP was the most 

significant eQTL for HERC1 gene expression in anterior cingulate cortex (P=7.02E-05; 

P_SMR=1.94E-03). HERC1 belongs to the ubiquitin–proteasome system that plays a key 

role in the protein degradation pathway essential for neuronal homeostasis, synaptic 

development and maintenance. Mutations in HERC1 have been associated with intellectual 

disability48 and autism spectrum disorders.49

To identify additional PiB-relevant candidate genes, we combined results from the brain 

expression, differential brain expression in AD, eQTL/SMR in the brain, and pathway 

analyses. Four genes meeting all these functional criteria were identified: RPS27L in the 

DAPK2 region, CYP4V2 and TLR3 in the CYP4V2 region, and IDH1 in the IDH1/C2orf80 
region (Table 3, Supplementary Table S6). RPS27L is an evolutionarily conserved ribosomal 

protein and a physiological regulator of transcription factor p53 that is involved in genomic 

stability and tumor suppression.50 p53 has also been implicated in AD progression, in part, 

due to its interaction with Aβ in AD progression.51 p53 also interact with IDH1 in 

glioblastoma.52 It seems that the involvement of RPS27L and IDH1 in the amyloidogenic 

process is through their effect on or interaction with p53. Although the role of CYP4V2 in 

amyloidosis is currently unclear, activated TLR3, along with some members of the toll-like 

receptors family, can induce Aβ uptake or inflammatory response during the AD 

progression.53 Further functional characterization of these candidate genes may help to 

elucidate their roles in brain amyloidosis.

A recent GWAS using CSFAβ42 as an endophenotype has identified two novel loci in 

addition to the APOE locus.33 One locus is near GLIS1 on chromosome 1 and the other in 

SERPINB1 on chromosome 6. The reported GLIS1/185031519 SNP was neither present in 

our genotyping array nor was it imputed. This SNP was also not in high LD with other 

SNPs. On the other hand, the reported SERPINB1/rs316341 SNP was present in our data, 

but it was not significant (P=0.148). We also examined four additional reported SERPINB1 
SNPs with P<1E-05 (rs316339, rs316337, rs392120, rsrs2293772)33 and found one of them 

to be nominally significant in our data (rs392120; P=0.033).

We estimated the genetic variance of global PiB retention explained by the APOE and top 15 

non-APOE SNPs with P<1E-05 using a linear regression model. The non-APOE SNPs along 

with APOE*4 explained 25%−35% of the amyloid variance; of which 14–17% was 

explained by APOE*4 alone. A previous study using a different amyloid tracer (florbetapir-

PET)32 found a similar contribution of APOE*4 (11%) to amyloid variance. However, a 

GWAS on CSF Aβ42 found a smaller contribution of APOE*4 (4%) to amyloid variance.33 

This may be due to the use of different methods to estimate the amyloid variance. While the 

CSF study used the Genome-wide Complex Trait Analysis (GCTA) that requires >3,000 

sample size,54 the two amyloid tracer studies with smaller sample sizes used linear 

regression. Our data, in conjunction with previous studies, highlight the presence of yet to be 

discovered variants that may be responsible for the unexplained genetic variance of amyloid 

deposition.
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As with any genome-wide study, this study has limitations. Although the present study used 

the largest combined sample of PiB-PET imaging data reported to-date (from three different 

centers and ADNI), the sample size was relatively small to achieve genome-wide 

significance for loci with small effect sizes. We predict that at least some of our suggestive 

loci with P<1E-05 might have achieved genome-wide significance with a larger sample size, 

as the direction of allelic effects for all suggestive loci were consistent in all datasets. Unlike 

some other phenotypes where data could be obtained readily on large numbers of subjects at 

a relatively low-cost, this is not the case with amyloid PET. Thus, the lack of a very large 

PiB-PET imaging database for a genome-wide study was a significant constraint. As more 

PiB-PET imaging data are obtained by different centers, future collaborative studies, as done 

here, on larger samples may allow the identification of additional genes for brain 

amyloidosis.

In conclusion, this is the first GWAS on PiB-PET that has confirmed the established 

association of the APOE locus with in vivo brain amyloidosis. In addition to the known 

association, we have identified novel variants in the APOE region that affect amyloidosis. A 

combination of genetic and functional approaches has also led to the identification of 

additional putative candidate genes that warrant follow-up genetic and functional studies to 

confirm their role in brain amyloidosis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Distribution of PiB retention in the University of Pittsburgh (PITT) (A), Washington 

University (WU) (B), and the Alzheimer’s disease Neuroimaging Initiative (ADNI) and the 

Indiana Memory and Aging Study (ADNI/IU) (C) samples. SUVR= Standardized Uptake 

Volume Ratio; BP= Binding Potential
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Figure 2a. 
Quantile-quantile plot for the individual GWAS results in the University of Pittsburgh 

(PITT), Washington University (WU), and the Alzheimer’s disease Neuroimaging Initiative 

(ADNI) and the Indiana Memory and Aging Study (ADNI/IU) datasets and in the meta-

analysis. λ is the genomic control value.
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Figure 2b. 
Manhattan plot showing the P-values in the meta-analysis. The blue line represents the 

suggestive significance line (P<E-05). The red line represents the significance threshold 

(P<5E-08).
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Figure 3. 
Regional plot of the APOE region on chromosome 19 in the meta-analysis. The relative 

location of genes and the direction of transcription are shown in the lower portion of the 

figure, and the chromosomal position is shown on the x -axis. The light blue line show the 

recombination rate across the region (right y -axis), and the left y axis shows the significance 

of the associations. The purple diamond shows the P-value for rs429358 that is the most 

significant SNP in the meta-analysis. The circles show the P-values for all other SNPs and 

are color coded according to the level of LD with rs429358 in the 1000 Genome Project 

EUR population.
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