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Gene-based tests to study the combined effect of rare variants on a particular phenotype

have been widely developed for case-control studies, but their evolution and adaptation

for family-based studies, especially studies of complex incomplete families, has been

slower. In this study, we have performed a practical examination of all the latest

gene-based methods available for family-based study designs using both simulated and

real datasets. We examined the performance of several collapsing, variance-component,

and transmission disequilibrium tests across eight different software packages and

22 models utilizing a cohort of 285 families (N = 1,235) with late-onset Alzheimer

disease (LOAD). After a thorough examination of each of these tests, we propose a

methodological approach to identify, with high confidence, genes associated with the

tested phenotype and we provide recommendations to select the best software and

model for family-based gene-based analyses. Additionally, in our dataset, we identified

PTK2B, a GWAS candidate gene for sporadic AD, along with six novel genes (CHRD,

CLCN2, HDLBP, CPAMD8, NLRP9, and MAS1L) as candidate genes for familial LOAD.

Keywords: gene-based, family-based, clustering, variance-component, transmission disequilibrium, rare variants,

whole exome sequencing, Alzheimer’s disease

INTRODUCTION

Alzheimer disease (AD) is a complex condition for which almost 50% of its phenotypic variability
is due to genetic causes; yet only 30% of the genetic variability is explained by known markers
(Ridge et al., 2016). GWAS studies have identified more than 20 risk loci (Lambert et al., 2013) and
sequencing studies have identified additional genes harboring low frequency variants with large
effect size (TREM2, PDL3, UNC5C, SORL1, and ABCA7; Sims et al., 2017). Recent studies also
indicate that Late-Onset AD (LOAD) families are enriched for genetic risk factors (Cruchaga et al.,
2017). Therefore, studying those families may lead to the identification of novel variants and genes
(Guerreiro et al., 2013; Cruchaga et al., 2014).
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Current consensus is that the missing heritability for complex
traits like AD may be hidden within rare variants that have low
to moderate effect on disease risk (Frazer et al., 2009; Manolio
et al., 2009; Cirulli and Goldstein, 2010). The rarity of these
markers requires specific study designs and statistical analyses
for their detection. The simplest approach to detect rare variants
for association is to test each variant individually using standard
contingency table and regression methods. But due to the limited
number of observations of the rare minor allele for a specific
variant, the statistical power to detect association with any rare
variant is limited; hence, extremely large samples are required
and a more stringent multiple-test correction is necessary (Li
and Leal, 2008; Bansal et al., 2010). It has been acknowledged
that the best alternative to single-variant analysis is to collapse
sets of pre-defined candidate rare variants within significant
units, usually genes (gene-based sets) (Neale and Sham, 2004;
Lee et al., 2014). For collapsing tests each variant is given a
certain weight and the weights of all variants within the region
are summed; depending on the weights and how summation is
performed there are three major types of gene-based methods:
collapsing tests, variance-component tests, and combined tests
(Lee et al., 2014). Collapsing tests analyze whether the overall
burden of rare variants is significantly different between cases
and controls by regressing disease status on minor allele counts
(MAC). The Cohort Allelic Sum Test (CAST) is a dominant
geneticmodel which assumes that the presence of any rare variant
increases disease risk (Morgenthaler and Thilly, 2007); whereas
the Combined Multivariate and Collapsing (CMC) method
collapses rare variants in different MAF categories and evaluates
the joint effect of common and rare variants through Hoteling’s
test (Li and Leal, 2008). However, neither CAST nor CMC tests
account for directional effect. The Variable Threshold (VT) test
does allow for both trait-increasing and trait-decreasing variants;
it selects optimal frequency thresholds for burden tests of rare
variants and estimates p-values analytically or by permutation
(Price et al., 2010). Variance-componence methods test for
association by evaluating the distribution of genetic effects for a
group of variants while appropriately weighting the contribution
of each variant. The sequence kernel association test (SKAT)
casts the problem to mixed models (Lee et al., 2014) and, in
the absence of covariates, SKAT reduces to a C-alpha test (Neale
et al., 2011). Finally, collapsing and variance component tests can
be combined into one statistical method, the SKAT-O approach
(Lee et al., 2012), which is statistically efficient regardless of the
direction and effect of the variants tested.

All these methods were initially designed for unrelated case-
control studies; but considering the rarity of these variants,
large datasets are required to achieve statistical power (Laird
and Lange, 2006). Alternatively, family-based studies in which
several family members share the same phenotype may provide
more statistical power than regular case-controls studies (Li
et al., 2006; Cirulli and Goldstein, 2010; Kazma and Bailey,
2011; Ott et al., 2011). Pioneering methods for gene-based
analyses in familial datasets are based on the transmission
disequilibrium test (TDT–Spielman et al., 1993) which uses
the marker genotype of an affected child and genotypes of
the parents to test for association (Laird et al., 2000; Horvath

et al., 2001; Ott et al., 2011; De et al., 2013; Ionita-Laza et al.,
2013). TDT works under the paradigm of Mendel’s laws to
determine which marker in the affected offspring is responsible
for the phenotype (Zöllner et al., 2004). TDT methods have been
extended to test rare-variants by grouping information across
multiple variants within a genomic region (He et al., 2014).
However, these methods were still not valid for incomplete or
nuclear families that have several affected offspring. Considering
the late-onset nature of Alzheimer disease it is often difficult
to obtain genetic information from parents (to conform trios)
or nuclear family units. The typical pedigree in familial LOAD
represents incomplete, large familial units (Figure 1). Most of
the early software for gene-based family-based studies were not
suitable for complex pedigrees like those observed in Alzheimer
studies. In recent years gene-based methods, whether referring to
collapsing, variance-component, or transmission disequilibrium
tests, have been adapted to account for complex family structure
in its gene-based calculations. Among the software that can
manage large pedigrees we find SKAT (Wu et al., 2011), FSKAT
(Yan et al., 2015), GSKAT (Wang et al., 2013), RV-GDT (He et al.,
2017), EPACTS (http://genome.sph.umich.edu/wiki/EPACTS),
FarVAT (Choi et al., 2014), PedGene (Schaid et al., 2013), and
RareIBD (Sul et al., 2016).

In this study, we wanted to evaluate the performance of the
eight most common gene-based family-based methods available
by using a real dataset, over 250 multiplex families affected with
Alzheimer disease, under different conditions and models. We
simulated multiple scenarios in which candidate variants in the
same gene perfectly segregates with disease status to rank the
different programs and models. We also tested the performance
of these tests for identifying known causal genes for AD in our
cohort. Finally, we performed genome-wide analyses to evaluate
the power of each of these tests. Altogether, we discuss the pros
and cons of each method that can be informative for other
investigators performing similar analyses: complex diseases in
complex, incomplete, large families. We want to emphasize that
although this work focused on AD, the information extracted
from this work can be applied to other complex traits as well.
Finally, based on the results from the methods analyzed, we
present some candidate genes for AD.

MATERIALS AND METHODS

Cohort
The LOAD families included in this study originated from two
cohorts: Washington University School of Medicine (WUSM;
n = 1,144) and Alzheimer Disease Sequencing Project (ADSP;
n= 91) (Table 1).

WUSM Cohort
Samples from the Washington University School of Medicine
(WUSM) cohort were recruited by either the Charles F. and
Joanne Knight Alzheimer’s Disease Research Center (Knight
ADRC) at the WUSM in Saint Louis or the National Institute
on Aging Genetics Initiative for Late-Onset Alzheimer’s Disease
(NIA-LOAD). This study was approved by each recruiting
center’s Institutional Review Board and research was carried out
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FIGURE 1 | Structure of families used in this study. Black diamonds represent cases and white diamonds represent controls. Y: genetic data available. N: no genetic

data available.

TABLE 1 | Demographic data for the familial dataset employed in this study.

N *Age ± SD *Age range % Fe % APOE4

Cases 824 73 ±7 48–99 63 73

Controls 411 83 ± 9 39–104 59 51

Total 1235 77 ± 10 39–104 61 65

*Age At Onset (AAO) for cases and Age at Last Assessment (ALA) for controls.

in accordance with the approved protocol. Written informed
consent was obtained from participants and their family
members by the Clinical and Genetics Core of the Knight ADRC.
The approval number for the Knight ADRCGenetics Core family
studies is 201104178. The NIA-LOAD Family Study has recruited
multiplex families with two or more siblings diagnosed with
LOAD across the United States. A description of these samples
has been reported previously (Wijsman et al., 2011; Cruchaga
et al., 2012; Fernández et al., 2017). We selected individuals for
sequencing from families in which APOEε4 did not segregate
with disease status, and in which the proband of the family did
not carry any known mutation in APP, PSEN1, PSEN2, MAPT,
GRN, or C9orf72 (described previously; Cruchaga et al., 2012).

ADSP Cohort
The Alzheimer’s Disease Sequencing Project (ADSP) is a
collaborative work of five independent groups across the
USA that aims to identify new genomic variants contributing

to increased risk for LOAD (https://www.niagads.org/adsp/
content/home). During the discovery phase, ADSP generated
whole genome sequence (WGS) data frommembers of multiplex
LOAD families, and whole exome sequence (WES) data
from a large case-control cohort. These data are available to
qualified researchers through the database of Genotypes and
Phenotypes (https://www.ncbi.nlm.nih.gov/gap Study Accession:
phs000572.v7.p4).

The familial cohort of the ADSP consists of 582 individuals
from 111 multiplex AD families from European-American,
Caribbean Hispanic, and Dutch ancestry (details about the
samples are available at NIAGADS). We downloaded raw data
(.sra format) from dbGAP for 143 IDs (113 cases and 23 controls)
from 37 multiplex families of European-American ancestry that
were incorporated with the WUSM cohort.

Sequencing
Samples were sequenced using either whole-genome sequencing
(WGS, 12%) or whole-exome sequencing (WES, 88%). Exome
libraries were prepared using Agilent’s SureSelect Human All
Exon kits V3 and V5 or Roche VCRome (Table 2). Both
WES and WGS samples were sequenced on a HiSeq2000 with
paired end reads, with a mean depth of coverage of 50× to
150× for WES and 30× for WGS. Alignment was conducted
against GRCh37.p13 genome reference. Variant calling was
performed separately for WES and WGS following GATK’s
3.6 Best Practices (https://software.broadinstitute.org/gatk/best-
practices/) and restricted to Agilent’s V5 kit plus a 100 bp of
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TABLE 2 | Number of samples for which whole genome sequencing (WGS) or

whole exome sequencing (WES) was performed, with detail of the exon library kits

employed in this study.

Exon library kit WGS WES

WGS 153

Agilent’s SureSelect Human All Exon kits V3 0 28

Agilent’s SureSelect Human All Exon kits V5 0 665

Roche VCRome 0 389

Total 153 1,082

padding added to each capture target end. We used BCFTOOLS
(https://samtools.github.io/bcftools/bcftools.html) to decompose
multiallelic variants into biallelic prior to variant quality control.
Variant Quality Score Recalibration (VQSR) was performed
separately for WES and WGS, and for SNPs and INDELs.
Only those SNPs and indels that fell above the 99.9 confidence
threshold, as indicated by WQSR, were considered for analysis;
variants within low complexity regions were removed from both
WES and WGS and variants with a depth (DP) larger than
the average DP + 5 SD in the WGS dataset were removed.
At this point SNPs and indels from WES and WGS datasets
were merged into one file. Non-polymorphic variants and those
outside the expected ratio of allele balance for heterozygosity
calls (ABHet = 0.3–0.7) were removed. Additional hard filters
implemented included quality depth (QD ≥ 7 for indels and
QD ≥ 2 for SNPs), mapping quality (MQ ≥ 40), fisher strand
balance (FS≥ 200 for indels and FS≥ 60 for SNPs), Strand Odds
Ratio (SOR ≥ 10 for Indels and SOR ≥ 3 for SNPs), Inbreeding
Coefficient (IC ≥ −0.8 for indels) and Rank Sum Test for
relative positioning of reference vs. alternative alleles within reads
(RPRS ≥ −20 for Indels and RPRS ≥ −8 for SNPs) (Figure S1).
We used PLINK1.9 (https://www.cog-genomics.org/plink2/ibd)
to remove variants that were out of Hardy Weinberg equilibrium
(p < 1 × 10−6), with a genotype calling rate below 95%, with
differential missingness between cases vs. controls, WES vs.
WGS, or among different sequencing platforms (p < 1× 10−6).

Samples with more than 10% of missing variants (four
samples) and whose genotype data indicated a sex discordant
from the clinical database (three samples) were removed from
the dataset. Individual and familial relatedness was confirmed
using identity-by-descent (IBD) calculations, an existing GWAS
dataset for these individuals, and the pedigree information.
Because many of the ADSP families were also recruited from the
NIA-LOAD repository there is a certain overlap (48 individuals)
between the WUSM and the ADSP familial cohorts; we kept
the duplicate that had better genotyping rate after QC. Principal
Component Analysis (PCA) was calculated to corroborate
ancestry and restrict our analysis to only samples from European
American origin. Functional impact and population frequencies
of variants were annotated with SnpEff (Cingolani et al., 2012).
For this analysis, only SNVs with a minor allele frequency (MAF)
below 1%, as registered in ExAC (Lek et al., 2016), were tested.

We excluded families carrying a known pathogenic
mutation in any of the Mendelian genes for Alzheimer disease,

Frontotemporal Dementia, or Parkinson disease (Fernández
et al., 2017). We restricted the selection of families to those with
at least one case and one control in the family, and we excluded
any participants that were initially clinically diagnosed with AD
but had a different diagnosis after pathological examination.
Finally, our dataset consisted of 1,235 non-hispanic whites
(NHW), 824 cases and 411 controls, from 285 different families
(Table 1, Table S1). Of these 1,235 individuals, 1144 originated
fromWUSM and 91 were from ADSP.

Study Design and Analysis
The goal of this study was to test the performance and power
of different gene-based family-based methods currently available,
using a real dataset consisting of 1,235 non-hispanic white
individuals from 285 families densely affected with AD. We
created three different scenarios to test (Figure 2). First, using the
real phenotype and pedigree structure from 25 of the 285 families,
we generated a synthetic dataset with multiple variants and
families with perfect segregation. Second, we evaluated different
variant-combinations for the APOE gene. Third, we performed
genome-wide gene-based analysis of only nonsynonymous SNPs
with a MAF <1%. For each one of these scenarios we evaluated
the performance of the different gene-based methods (collapsing,
variance-component, and transmission disequilibrium) from
the following family-based packages: SKAT (Wu et al., 2011),
FSKAT (Yan et al., 2015), GSKAT (Wang et al., 2013), RVGDT
(He et al., 2017), EPACTS (http://genome.sph.umich.edu/wiki/
EPACTS), FarVAT (Choi et al., 2014), PedGene (Schaid et al.,
2013), RareIBD (Sul et al., 2016). Some of these software offer
the option to run different gene-based algorithms; e.g., GSKAT,
EPACTS, FarVAT or PedGene can run collapsing and variance-
component tests; therefore, we ran a total of 25 models (Table 3).
The details of each one of these scenarios are described next.

Simulated Data
We selected 25 representative families from our entire dataset
for which there were genotypic data for three to seven members
(Table S2). We used the existing family structure and phenotypes
of these families, and a simulated gene called “GENE-A”
containing five variants. We generated several scenarios in which
different numbers of families presented perfect segregation with
disease status for a variant in GENE-A (Table 4, Table S2). First,
we considered a scenario in which only the first five families
of the dataset were included in the analyses and each family
presented a different perfectly segregating variant of GENE-
A [scenario 5 family carriers (FC) and 0 non-carriers (FNC):
5FC×0FNC]. Second, we generated additional scenarios in which
we kept the same five families as carriers of segregating variants
in GENE-A, and added five (scenario 5FC×5FNC), ten (scenario
5FC×10FNC), 15 (scenario 5FC×15FNC), and 20 (scenario
5FC×20FNC) families that were not carriers of any variant in
GENE-A. Then, we considered four scenarios of 25 families in
which each new scenario added families who were carriers of
a segregating variant in GENE-A. We started with the scenario
5FC×20FNC, then we simulated 10 families who had carriers
and 15 families who were non-carriers (scenario 10FC×15FNC),
15 families with carriers and 10 families who were non-carriers
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FIGURE 2 | Schematic design of the analysis performed in this study.

TABLE 3 | Relationship of programs and models tested according to their main features and kinship matrix that they use.

Collapsing Variance-component Combined Transmission-disequilibrium Kinship

Burden CMC VT C-ALPHA SKAT SKATO BN IBS Ped

EPACTS X X X X

RVGDT X

SKAT-v2 X X X X

GSKAT X X X

FSKAT X X

FarVat-Adj X X X X

FarVat-BLUP X X X X

Pedgne X X

RareIbd X

(scenario 15FC×10FNC), 20 families with carriers and five
families who were non-carriers (scenario 20FC×5FNC) and
concluded with a scenario in which all 25 families were carriers
of one out of the possible five segregating variants in GENE-A
(scenario 25FC×0FNC). We tested each of these scenarios with
all previously mentioned gene-based methods and software to

evaluate their power to associate perfect segregating variants with
disease.

Candidate Genes
APOE is the largest genetic risk factor for Alzheimer’s disease.
The allelic combination of two SNPs, rs429358 (APOE 4;
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TABLE 4 | Representation of the segregation pattern of the simulated gene.

GENE-A

SNP1 SNP2 SNP3 SNP4 SNP5

Fam1 1 0 0 0 0

Fam2 0 1 0 0 0

Fam3 0 0 1 0 0

Fam4 0 0 0 1 0

Fam5 0 0 0 0 1

Fam6 1 0 0 0 0

Fam7 0 1 0 0 0

Fam8 0 0 1 0 0

Fam9 0 0 0 1 0

Fam10 0 0 0 0 1

Fam11 1 0 0 0 0

Fam12 0 1 0 0 0

Fam13 0 0 1 0 0

Fam14 0 0 0 1 0

Fam15 0 0 0 0 1

Fam16 1 0 0 0 0

Fam17 0 1 0 0 0

Fam18 0 0 1 0 0

Fam19 0 0 0 1 0

Fam20 0 0 0 0 1

Fam21 1 0 0 0 0

Fam22 0 1 0 0 0

Fam23 0 0 1 0 0

Fam24 0 0 0 1 0

Fam25 0 0 0 0 1

One (1) means that all cases within the family are carriers of the variant. Zero (0) means

that the variant is not present in that family.

19:45411941:T:C), and rs7412 (APOE 2: 19:45412079:C:T),
determines one of the three major isoforms of APOE protein,
ε2, ε3, or ε4. The dosage of these isoforms determines a person’s
risk for AD, from having a protective effect in the cases of APOE
ε2/ε2 (OR 0.6) or ε2/ε3 (OR 0.6) to different degrees of increased
risk according to the number of copies of the ε4 allele (ε2/ε4,
OR 2.6; ε3/ε4, OR 3.2; ε4/ε4, OR 14.9) (Farrer et al., 1997). We
tested the power of all previously mentioned gene-basedmethods
and software to detect the association of APOE gene with disease
in our entire dataset (N = 1,235) under different conditions.
We first tested all polymorphic variants (nonsynonymous with
MAF< 1%) in the APOE gene, next we tested only those variants
considered to have a high or moderate effect on the protein
including rs429358 and rs7412, then we tested high andmoderate
effect variants alone, and finally tested rs429358 and rs7412 alone.

Genome-Wide Analyses
We performed gene-based burden analyses on a genome-wide
level in our entire dataset (families n = 285; samples N =

1,235) to evaluate the power of each of the previously described
methods to detect novel genes significantly associated with
disease; only single nucleotide variants (SNVs) with a minor

allele frequency equal to or below 1% (MAF ≤ 1%), based on
the EXAC dataset (Lek et al., 2016), and with a predicted high
or moderate effect, according to SnpEff (Cingolani et al., 2012),
were included in the analysis. Quantile-Quantile (QQ) plots from
gene-based p-values were generated with the R package “ggplot2”
(Wickham, 2009). We also evaluated the correlations between
these methods using Pearson correlation (Pc) and Spearman
correlation (Sc) tests of the log of the p-values using R v3.4.0 (R
Core Team, 2017). Pc evaluates the linear relationship between
two continuous variables whereas Sc evaluates the monotonic
relationship between two continuous or ordinal variables.

Software Tested
An accompanying supporting file (Supplementary Material)
provides a summary of the code employed to run each of the
programs described below.

GSKAT
GSKAT (Wang et al., 2013) is among the first R packages
developed with the goal of extending burden and kernel-based
gene set association tests for population data to related samples
with binary phenotypes. To handle the correlated or clustered
structure in the family data, GSKAT fits a marginal model with
generalized estimated equations (GEE). The basic idea of GEE is
to replace the covariancematrix in a generalized linearmixmodel
(GLMM) with a working covariance matrix that reflects the
cluster dependencies. Accordingly, GSKAT blends the strengths
of kernel machine methods and generalized estimating equations
(GEE) to test for the associations between a phenotype and
multiple variants in a SNP set. We ran GSKAT correcting for sex
and first two PCs.

SKAT
The sequence kernel association test SKAT (Wu et al., 2011)
is an R package initially designed for case-control analyses.
Later they incorporated the Efficient Mixed-Model Association
eXpedited (EMMAX) algorithm (Kang et al., 2010; Zhou and
Stephens, 2012) which allows for performing family-based
analyses. EMMAX simultaneously corrects for both population
stratification and relatedness in an association study by using
a linear mixed model with an empirically estimated relatedness
matrix to model the correlation between phenotypes of sample
subjects. The efficient application of the EMMAX algorithm
depends on appropriate estimates of the variance parameters.
Relatedness matrices can be calculated based on pedigree
structure or estimated from genotype data. For the latter
different methods have been proposed. Relatedness can be
estimated using those alleles that have descended from a single
ancestral allele, i.e., those that are Identical by Descent (IBD), or
using the Balding-Nichols (BN) method (Balding and Nichols,
1995) which explicitly models current day populations via their
divergence from an ancestral population specified by Wright’s
Fst statistic. We ran SKAT v1.2.1, in R v3.3.3, using the option
SKAT_Null_EMMAX correcting for sex and first two PCs and
we tested four different kinship matrices: pedigree, IBS, BN and
a BN-based kinship matrix (HR) that the EPACTS software
constructs (Table S3).

Frontiers in Neuroscience | www.frontiersin.org 6 April 2018 | Volume 12 | Article 209

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Fernández et al. Gene-Based Family-Based Methods in Alzheimer Disease

FSKAT
FSKAT (Yan et al., 2015), also an R package, is based on a
kernel machine regression and can be considered an extension
of the sequence kernel association tests (SKAT and famSKAT)
for application to family data with dichotomous traits. FSKAT
is based on a GLMM framework. Moreover, because it uses
all family samples, FSKAT claims to be more powerful than
SKAT which uses only unrelated individuals (founders) in
the family data. FSKAT constructs a kinship matrix based on
pedigree relationships using the R kinship library.We ran FSKAT
correcting for sex and first two PCs.

EPACTS
Efficient and Parallelizable Association Container Toolbox
(EPACTS) is a stand-alone software that integrates several gene-
based statistical tests (CMC, VT, and SKAT) and adapts them to
work with complex families by using EMMAX (https://genome.
sph.umich.edu/wiki/EPACTS). EPACTS generates a kinship
matrix based on the BN algorithm and also annotates the
genotypic input file and offers filtering tools (frequency and
predicted effect of variants) for easier user-selection of variants
that go into gene-based analyses. Nonetheless, we used the same
set of variants as in the other tests to run our analysis with
EPACTS, correcting for sex and first two PCs.

FarVAT
The Family-based Rare Variant Association Test (FarVAT) (Choi
et al., 2014) provides a burden and a variance component
test (VT) for extended families and extends these approaches
to the SKAT-O statistic. FarVAT assumes that families are
ascertained based on the disease status if family members
and compares minor allele frequencies between affected and
unaffected individuals. FarVAT is implemented with C++ and
is computationally efficient. Additionally, if genotype frequencies
of affected and unaffected samples are compared to detect genetic
associations, it has been shown that the statistical efficiency can
be improved by modifying the phenotype; and so FarVAT uses
prevalence (Lange and Laird, 2002) or Best Linear Unbalanced
Predictor (BLUP) (Thornton and McPeek, 2007) as covariate to
modify the genotype.

PedGene
PedGene (Schaid et al., 2013) is an R package that extends burden
and kernel statistics to analyze binary traits in family data using
large-scale genomic data to calculate pedigree relationships. To
derive the kernel association statistic and the burden statistic for
data that includes related subjects, they take a retrospective view
of sampling with the genotypes considered random.

RVGDT
The Rare Variant Generalized DisequilibriumTest (RVGDT) (He
et al., 2017), implemented with Python, differs from the previous
methods presented. Instead of using a kernel method to evaluate
variants, it uses the generalized disequilibrium test (GDT) which
tests genotype differences in all discordant relative pairs to assess
associations within a family (Chen et al., 2009). The rare-variant
extension of GDT (RVGDT) aggregates a single-variant GDT

statistic over a genomic region of interest, which is usually a gene
(He et al., 2017). We ran RVGDT correcting for sex and first two
PCs.

RareIBD
The developers claim RareIBD (Sul et al., 2016) to be a program
without restrictions on family size, type of trait, whether founders
are genotyped, or whether unaffected individuals are genotyped.
The method is inspired by non-parametric linkage analysis and
looks for rare variants with segregation patterns among affected
and unaffected individuals that are different from the predicted
distributions based on Mendelian inheritance and computes a
statistic measuring the difference.

RESULTS

Simulated Dataset
Results from the simulated dataset indicate that RVGDT,
rareIBD, and collapsing-based methods (Burden, CMC, and
CLP) provided more statistical power than the variance-
component methods to detect associations of perfectly
segregating variants with disease status (Table 5).

In a hypothetical scenario of five families in which each family
presented perfect segregation with disease status for a different
variant within the same gene (5FC×0NFC), transmission-
disequilibrium based methods evaluated this association as
significant (even after multiple test correction; e.g., RVGDT p
= 0.004; p-value after multiple test correction 0.004 × 9 =

0.036). RVGDT reached a ceiling p-value of 1 × 10−4; at 10
families with carriers (FC) plus 15 families of non-carriers (FNC).
RVGDT was unable to produce a p < 9 × 10−4, therefore it
is not possible to rank or determine the significance of genes
that reach this limit. Similarly, RareIBD reports the same p-
value for all simulated scenarios, which may be an artifact or a
flaw of the program. Collapsing-based methods (Burden, CMC
and CLP) started with significant p-values for the 5FC×0NFC
scenario, but as we added FNC in the analyses, the associations
became less significant. Then as we increased the number
of FC of segregating variants, the associations became more
significant. In our analyses, most of the variance-component
tests could not work with the scenarios containing only five
families carrying the segregating variant; most of the tests only
provided p-values once 25 families were included in the analyses
(5FC×20FNC). After that, as we increased the number of FC of
segregating variants, the p-values became smaller. SKAT required
15FC×10FNC to report nominally significant p-values, GSKAT
required 20FC×5FNC to report statistically significant p-values,
FarVAT-CALPHA did not generate significant p-values unless
we used the BLUP correction; FarVAT SKATO reported p-values
that were significant at 15FC×10FNC, and at 5FC×20FNC if we
used the BLUP correction. P-values from EPACTS-SKAT were
not statistically significant after multiple test correction. FSKAT
did not deal well with perfectly segregating scenarios; it did not
provide p-values for a scenario of only five families all carriers
of the segregating variant (5FC×0FNC–FSKAT p-value = NA),
and after five families carrying a segregating variant, the program
saturated giving no p-value.
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Overall, Transmission-disequilibrium tests and collapsing
tests were the models that identified the simulated segregating
variants as associated with the phenotype; the CMC model
provided by FarVAT-BLUP was the one providing most genome-
wide significant p-values, even in the 5FC×0FNC scenario.

Candidate Genes-APOE
We examined the performance of four gene-sets generated for
the APOE gene with the 22 family-based gene-based methods in
our entire familial cohort. Neither the entire set of polymorphic
variants (set “gene” in Table 6) nor the set including only rare
nonsynonymous variants (set “HM” in Table 6) confer risk for
these families. The association seems to be driven by the common
APOE ε2 and ε4 variants, since only when these were included,
either alone (set “ε2ε4” in Table 6) or in conjunction with the
rest of the rare nonsynonymous variants (set “HM-ε2ε4” in
Table 6) did most of the tests yield a significant p-value (after
multiple test correction). Only EPACTS-SKAT did not report
the APOE ε2 and ε4 variants as significantly associated, after
multiple test correction, within our dataset (Table 6). The most
significant association for APOE ε2 and ε4 variants was reported
by FarVAT-CMC test.

Genome-Wide Analyses
Overall, we examined eight software and over 22 algorithms
for genome-wide association analyses in our extended family
dataset of 285 families and 1,235 non-hispanic white individuals.
We only included in the analyses nonsynonymous SNPs with
a MAF ≤ 1% and we corrected for sex and first two PCs. All
22 algorithms were run using the same input data. The results
for these 22 algorithms are described, grouped per category,
in the following sections. First, we compare the correction
effect provided by four kinship matrices (Figure 3A). Second,
we compare the performance of nine variance-component
software and algorithms (Figure 3B). Third is the comparison
of eight collapsing software and algorithms. Fourth, we compare
two transmission-disequilibrium tests. We conclude the results
section by providing a summary of the pros and cons
encountered while running these methods. Overall, most of
the results from the gene-based methods tested seemed quite
deflated. Only PedGene, FarVAT and Rare-IBD seemed to
provide values closer to or above the expected under the null
hypothesis. The most efficient in terms of power and p-value
inflation appears to be FarVAT with BLUP correction.

Kinship Matrices
We tested the correction provided by four kinship matrices using
the SKAT method with EMMAX correction implemented in
the R package SKATv2. The four kinship matrices tested were
pedigree calculation (PED), Identity By State (IBS) estimation,
Balding-Nichols (BN) estimation, and the kinship generated
by EPACTS (HR) which is also based on the BN algorithm
(Figure 3A). Table S3 offers a comparison of these kinships for
FAM#1 and FAM#2 of our simulated dataset. For these analyses,
we ran the SKAT-EMMAX method in our entire dataset, gene-
wide, and calculated a QQ plot and inflation factor (λ) to obtain a
general ideal of the behavior of eachmatrix.Matrices based on the

BN algorithm seemed to have a similar performance (SKAT-BN λ

= 0.038, SKAT-HR λ= 0.039,Table 7) though their concordance
was lower than expected considering they are based on the
same algorithm [Pearson correlation (Pc) = 0.85; Spearman
correlation (Sc)= 1]. Although the PEDmatrix generates a more
restrictive correction than the IBS matrix (SKAT-PED λ = 0.36,
SKAT-IBS λ = 0.67, Table 7), these two tests have a similar
overall performance as the p-values for the different genes were
highly correlated (Pc = 0.97; Sc = 0.98), making the PED matrix
a good surrogate for the IBS matrix. Finally, there were clear
performance differences between the BN-type matrices (BN and
HR) and the IBS-type matrices (IBS and PED), exemplified by the
different top candidate genes (NR1D1 for BN-type matrices and
CHRD for IBS-type matrices) and by the correlation algorithms
(SAKT-IBS vs. SKAT-BN Pc = 0.8; Sc = 0.89). Overall, we
found that the IBS matrix provided the best balance between
covariance-correction and overcorrection in our dataset.

Collapsing Tests
The collapsing methods tested from four different software
(PedGene, FarVAT, EPACTS and GSKAT) were Burden, CMC,
and VT (Figure 3C). To compare the different tests we followed
a similar approach as above, ran the different software with the
same imputed file, and compared the λ.

In our analyses, the burden test by GSKAT presented the
most deflated values; though the lambda does not illustrate this
(GSKAT-Burden λ= 1.71,Table 7) because of the initial inflation
among the low or non-significant genes. EPACTS-CMC (λ =

0.85) and EPACTS-VT (λ = 0.95) provided values closer to the
expected, and although their QQ-plots appear to follow a similar
trend, their correlation is low (Pc = 0.54; Sc = 0.68) and they
reported different top genes. The Burden and CMC methods
by FarVAT and FarVAT-BLUP provided p-values closest to the
expected (FarVAT-Burden λ = 0.98; FarVAT-CMC λ = 0.99,
FarVAT-BLUP-Burden λ = 1.03; FarVAT-BLUP-CMC λ = 1.07).
The correlation for the gene p-values was higher between results
generated by the samemethod (FarVAT-BLUP-CMC vs. FarVAT-
BLUP-Burden Pc = 0.99; Sc = 0.96; FarVAT-CMC vs. FarVAT-
Burden Pc = 0.98; Sc = 0.97) than between results generated
using the same algorithm (FarVAT-BLUP-CMCvs. FarVAT-CMC
Pc = 0.88; Sc = 0.8; FarVAT-BLUP-Burden vs. FarVAT-Burden
Pc = 0.85; Sc = 0.77). PedGene in the burden model was the
software that provided the most significant p-values; however,
these were clearly inflated compared to the predicted p-values
(Pedgene-Burden λ = 2.99, Table 7) and the results were not
correlated with any other Collapsing test (Pc and Sc values< 0.1).

Variance Component Tests
This subset included all the Variance component-based
methods available, CLP, CALPHA and SKAT, from six different
software: PedGene, FarVAT, FSKAT, EPACTS, SKAT, and
GSKAT (Figure 3C). GSKAT was the software that reported
more deflated values, though the lambda does not illustrate
this (GSKAT-SKAT λ = 1.681, Table 7) because of the initial
inflation among the low or non-significant genes. GSKAT
was followed by SKAT and EPACTS which showed similar
λ and performance-values for each gene (Pc = 0.8, Sc =
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FIGURE 3 | Quantile-quantile (QQ) plots from different family-based gene-based methods for all nonsynonymous variants with a MAF <1% in our family-based

dataset. (A) Comparison of SKAT test using different kinship matrices: pedigree calculation (PED), Identity By Similarity (IBS) estimation, Balding-Nichols (BN)

estimation, and the kinship generated by EPACTS (HR). (C) Comparison of different collapsing tests: GSKAT, EPACTS, FarVAT, and PedGene. (B) Comparison of

different variance-component gene-based methods: GSKAT, FSKAT, SKAT, EPACTS, FarVAT, and PedGene. (D) Comparison of transmission disequilibrium tests:

RVGDT and RareIBD.

0.8, Figure 4). The CLP, CALPHA, and SKATO methods by
FarVAT and FarVAT-BLUP provided p-values closest to the
expected (FarVAT-CLP λ = 1.00; FarVAT-CALPHA λ = 1.15;
FarVAT-SKATO λ= 1.02, FarVAT-BLUP-CLP λ= 1.11; FarVAT-
BLUP-CALPHA λ = 1.26; FarVAT-BLUP-SKATO λ = 1.10).
FarVAT-CALPHA, FarVAT-SKATO, FarVAT-BLUP-CALPHA
and FarVAT-BLUP-SKATO reported the same top candidate
gene (CHRD) (Table 7), though the overall p-value correlation
was lower than expected considering they are based on the same
algorithm (FarVAT-SKATO vs. FarVAT-BLUP-SKATO Pc = 0.6,
Sc = 0.7; FarVAT-CALPHA vs. FarVAT-BLUP-CALPHA Pc =

0.82 Sc= 0.82, Figure 4). On the other hand, despite the fact that
FarVAT-CLP and FarVAT-BLUP-CLP had higher correlation (Pc

= 0.85, Sc = 0.77), these two tests reported different top genes
(FarVAT-CLP top gene is MAS1L, and FarVAT-BLIP-CLP top
gene is NLRP9). PedGene in the SKAT model was the software
that provided the most significant p-values, but these were clearly
inflated (Pedgene-SKAT λ = 3.53, Table 7) and its correlation
with other variance component tests was low to null (Pc and Sc
values < 0.2).

Transmission Disequilibrium Tests
We tested two transmission disequilibrium tests, RVGDT and
Rare-IBD, which were designed to account for large extended
families of arbitrary structure (Figure 3D). Of these two, RVGDT
was the test that more closely approached the expected under the
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null (λ = 0.99), whereas Rare-IBD provided slightly inflated p-
values (λ = 1.450, Table 7). The correlation between these two
methods was very low (Pearson correlation = 0.23, Spearman
correlation= 0.17). A common issue with both methods was that
we observed some stratification toward more significant p-values
which made it difficult to determine a top significant gene.

Pros and Cons of the Different Gene-Based Methods
Among all the methods tested, EPACTS and FarVAT are the most
user-friendly, time-efficient and versatile software. EPACTS is an
all-in-one package that annotates the input file, generates the
kinship matrix and performs gene-based analysis under different
conditions (minor allele frequency and predicted functionality of
the variant) with only tag specification. In addition, the program
can be run on a genome-wide basis or at a smaller scale given
genes or regions specified by the user. FarVAT can generate the
kinship matrix by either using the pedigree relationships or using
the genetic relationship among individuals. It does not annotate
the input file and requires that the user provide their own set of
genes and variants per gene to analyze; it allows the user to choose
between BLUP or prevalence to estimate and incorporate random
effects on the phenotype. FarVAT has initial conditioning that
only takes founder-based MAF, so when a genetic variant only
has minor alleles in non-founders (offspring) these numbers will
not be counted. This is a big limitation with respect to the other
programs that take into account all variants regardless of their
presence in founders or not. Since we only had genetic data for
siblings for many of our families, so no genetic data for founders,
we ran FarVAT with the “–freq all” option so that all variants
would be included regardless if they were present in founders or
not.

FSKAT, GSKAT, and SKAT require some R knowledge from
the user, and are less flexible. For FSKAT and GSKAT the user
has to provide a genotype, a phenotype, and a gene-set file. For
SKAT the user has to additionally provide the kinship matrix.
Because these programs were designed to run on a per gene basis,
these take longer computational time to be run on a genome-
wide level than EPACTS or FarVAT, even if the user parallelizes
computation. PedGene is also an R package that requires a
genotype, a phenotype file with complete pedigree information
(to generate the kinship matrix), and a gene-set file. PedGene
provides phenotype adjustment by logistic regression on the trait
of interest, but it does not allow for extra covariates, which
prohibits correction by multiple PCs or other variables. RVGDT
is a Python based program, quite user-friendly since it is operated
with simple command-line but is limited in its options. Similar
to FSKAT, GSKAT, and SKAT, it is designed to be run on a per-
gene basis for which loops and parallelization have to be set up
for genome-wide testing. The same applies to RareIBD which
requires a genotype, a phenotype, and a Kinship coefficient file for
each gene that the user wants to test. For each gene the program
first computes statistics for each founder within each family and
then calculates the gene-based p-value. The first step of this
process can easily take between 3 and 5min for families with
<100 individuals; hence, the overall time for one gene is directly
dependent on the number of families and the time required for
a genome-wide analysis is proportional to the number of genes
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FIGURE 4 | Correlation plots from different family-based gene-based methods for genes with a p ≤ 0.005. (A) Pearson correlation correlates genes according to their

p-values. (B) Spearman correlation correlates genes according to their rankings.

being tested. Although it is possible to parallelize the jobs using a
high-performance cluster (if available) this program is the slowest
of all tested.

One of the major drawbacks we found is that some of these
programs do not accept missing data (FSKAT or RareIBD) or
will not generate a p-value if the gene set contains only one
variant (GSKAT, PedGene or FarVAT). FSKAT does not accept
missing data, and although it calculated p-values for genes that
only have one informative SNP (one-SNP-gene), there were at
least 75 (3.26%) of 2,154 one-SNP-genes for which the returned
p-value was “2.” GSKAT did not provide p-values for more than
1,875 one-SNP-genes. PedGene also had trouble generating p-
values for 44 one-SNP-genes out of a total of 1,916 singletons.
FarVAT did not generate p-values for the one-SNP-genes using
the Burden and SKATOmodels but it did generate p-values using
the CMC and CLP models for the same 1,875 one-SNP-genes.

Candidate Genes for FASe Project
Our results indicate that transmission disequilibrium tests
identify genes that have aMendelian behavior, whereas collapsing
and variance-component tests identify genes that confer risk for
disease. Therefore, we decided to combine and compare results
from all approaches to identify the genes with most consistent
results (Table 8).

PedGene provided the most significant p-values for NTN5
(Pedgene-Burden p = 5.80 × 10−8; PedGene-SKAT p = 1.26
× 10−8) and ANKRD42 (PedGene-Burden p = 3.62 × 10−7;
PedGene-SKAT p= 1.16× 10−7). However, the inflated p-values
observed and low correlation with any of the other software

tested using the same algorithms makes us suspicious of the
validity of these results.

CHRD was the gene with the third most significant p-value.
CHRD had a p ≤ 5 × 10−7 in three different models (FarVAT-
CALPHA, FarVAT-SKATO, and FarVAT-BLUP-CALPHA).
Additionally, as we lowered the considered p-value threshold, we
found that more tests identified CHRD as a potential candidate
gene associated with AD. When we lowered the threshold to
suggestive genome-wide p-value (p ≤ 5 × 10−4) we found
that seven different models identified CHRD as significantly
associated with AD. Following the same method we found that
CLCN2, MAS1L, and PTK2B had p ≤ 5 × 10−05 in at least three
tests, and if we lowered the threshold to≤5× 10−4 p-value, these
genes were identified as significant by at least three additional
tests.

Among genes with a p ≤ 5 × 10−04; CPAMD8 was identified
by at least nine gene-based methods (FarVAT, FarVAT-BLUP, and
PedGene). The exact p-value forCPAMD8 could not be estimated
by RVGDT as it reported a p-value of 9 × 10−04, which is
the most significant p-value reported by this test. Therefore, we
cannot conclude that CPAMD8 presented a p-value ≤ 5 × 10−04

by RVGDT. CHRD, CLCN2, MAS1L, PTK2B, and CPAMD8,
NLRP9, and HDLBP were also potential novel candidate genes
for familial LOAD as they had p≤ 5× 10−04 using at least five or
more tests (Table 8).

Since these were identified by multiple gene-based methods,
we wanted to determine whether any of these seven candidate
genes are involved in known AD pathways. Common variants in
PTK2B have been associated with AD risk at a genome-wide level
(Lambert et al., 2013). Our results indicate there are additional
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TABLE 7 | Top results for all gene-based methods tested.

Software TEST Top gene Top p-value Lambda

PedGene SKAT KANSL1L 2.42 × 10−12 3.533

PedGene Burden TTN 1.04 × 10−8 2.997

GSKAT Burden PCSK6 3.04 × 10−3 1.704

GSKAT SKAT NR1D1 1.90 × 10−3 1.681

Rare-IBD TDT SNTB2 1.00 × 10−4 1.450

FarVAT-BLUP CALPHA CHRD 4.60 × 10−07 1.259

FarVAT CALPHA CHRD 2.09 × 10−07 1.152

FarVAT-BLUP CLP NLRP9 1.14 × 10−4 1.112

FarVAT-BLUP SKATO CHRD 7.37 × 10−7 1.101

FarVAT-BLUP CMC IGHV1-69 1.28 × 10−4 1.066

FarVAT-BLUP Burden NLRP9 1.14 × 10−4 1.031

FarVAT SKATO CHRD 3.54 × 10−7 1.016

FarVAT CLP MAS1L 1.25 × 10−5 1.000

RVGDT TDT RTN3 9.99 × 10−4 0.995

FarVAT CMC HSD3B1 4.40 × 10−5 0.993

FarVAT Burden MAS1L 1.25 × 10−5 0.985

EPACTS VT PPAN-P2RY11 1.20 × 10−4 0.954

FSKAT SKAT CHRD 2.00 × 10−5 0.938

EPACTS CMC BTN2A2 1.05 × 10−3 0.849

SKAT IBS CHRD 7.94 × 10−5 0.668

EPACTS SKAT CHRD 2.42 × 10−5 0.635

SKAT PED CHRD 2.47 × 10−4 0.360

SKAT HR NR1D1 2.06 × 10−2 0.039

SKAT BN NR1D1 2.21 × 10−2 0.038

Top gene, p-value and lambda for each test is given, ordered by lambda value.

low-frequency and rare nonsynonymous variants in PTK2B that
are associated with AD risk in late-onset families.

We used the GeneMANIA (http://pages.genemania.org/)
algorithm on the seven candidate genes (CHRD,MAS1L, PTK2B,
CPAMD8, NLRP9, CLCN2, and HDLBP) and known AD-
related genes (APP, PSEN1, PSEN2, APOE, TREM2, PLD3, and
ADAM10) which are involved in some pathways important in AD
(APP-metabolism and immune response). GeneMANIA looks
for relationships among a list of given genes by searching within
multiple publicly available biological datasets. These datasets
include protein-protein, protein-DNA and genetic interactions,
pathways, reactions, gene and protein expression data, protein
domains and phenotypic screening profiles. We found that our
candidate genes have genetic interactions and co-localization
with known AD genes. CHRD and PTK2B are involved in
“regulation of cell adhesion” like ADAM10; PTK2B is involved in
“regulation of neurogenesis” like APOE and “perinuclear region
of cytoplasm” like APP, PSEN1 and PSEN2. Finally, CLCN2
and PTK2B are connected through “regulation of ion transport”
(Figure 5).

DISCUSSION

The missing heritability in AD, and in many complex diseases,
may be found in very rare variants for which discovery will

require either large datasets (e.g., the ADSP Discovery Phase
which has over 10,000 sequenced individuals) or datasets
enriched for rare variants (such as families with history of AD).
In this study, we present the most comprehensive performance
analyses of multiple gene-based methods using 285 families with
AD. Some of the current methods available are underpowered
or too restrictive to detect genes significantly associated with
this disease (Figure 4). Results from our simulated data (Table 5)
show that only certain highly-restricted scenarios provide gene-
wide significant p-values in family-based analyses; whereas
similar scenarios in a case-control study would result in gene-
wide p-values. To circumvent this power issue, we relied
on the combination of multiple evidence toward the same
gene.

One key aspect to adapt gene-based analyses to a family-
based context is to account for population stratification and
hidden relatedness that may appear due to the inherent nature
of family datasets. To take into account this issue, gene-based
algorithms must incorporate kinship matrices to model the
relationships among samples. Therefore, an appropriate estimate
of the kinship matrix is of utmost importance. In this work
we show how different relationship matrices influence results.
We tested the three most common types of kinship matrix,
pedigree reconstruction (PED), identity by state (IBS), and
Balding-Nichols (BN). We show that for a situation of complex
incomplete families, correction using PED or BN matrices will
lead to an overcorrection of the relationships decreasing the
power of these tests (Table 7, Figure 4A).

In order to choose the best gene-based algorithm for analysis,
it is important to take into account the nature (impact and
directionality) of the variants that are being included in the
test. Collapsing tests are powerful when a large proportion of
variants are causal and the effects are in the same direction.
Variance-component tests are supposed to be more powerful
than collapsing tests because they allow for admixture of risk
and protective variants within the region being tested (Ionita-
Laza et al., 2013). It is not practical to account for the nature
of the variants included in each gene-set, and the true disease
model is unknown and variable; hence, omnibus or combined
tests such as SKAT-O would be desirable for genome-wide
studies (Lee et al., 2012). However, most family-based methods
do not incorporate the SKAT-O algorithm, except FarVAT.
Therefore, the best approach to perform genome-wide rare
variant discovery is to combine different algorithms and look for
common signatures across the tests performed. Nonetheless, we
are aware that running all available tests is a time-consuming task
that requires additional expertise and resources. In our analyses
FarVAT, with the BLUP adjustment, provide the best results in
terms of significant p-values and minor inflation, for genome-
wide gene-based analysis; it is a fast software that provides results
from multiple tests at the same time. The R version of SKAT
or EPACTS would be alternatively valid choices, taking into
account that these overcorrect and the p-value threshold should
be lowered.

In this study, we identified CHRD as a candidate gene
with a genome-wide significant p-value (5 × 10−07) reported
by three tests, and another six genes that had a suggestive
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FIGURE 5 | Gene network for the seven candidate genes (CHRD, CLCN2, CPAMD8, HDLBP, MAS1L, NLRP9, and PTK2B) with multiple evidence of a p ≤ 5 ×

10−04, anchored with known AD genes (APP, PSEN1, PSEN2, APOE, TREM2, ADAM10, and PLD3), as described by GeneMANIA.

genome-wide p < 5 × 10−04 in at least five, and up to nine, of
the different test performed: CLCN2, CPAMD8, HDLBP, MAS1L,
NLRP9, and PTK2B.Additionally, these genes seem to have direct
and indirect interactions (genetic interaction, co-localization or
shared function) with known AD genes (APP, PSEN1, PSEN2,
APOE, TREM2, PLD3, and ADAM10).

CHRD, chordin, is a highly-conserved developmental protein
which inhibits the ventralizing activity of bone morphogenetic
proteins, is active during gastrulation, expressed in fetal and adult
liver and cerebellum, and is associated with Cornelia de Lange
syndrome (Smith et al., 1999). CLCN2, chloride voltage-gated
channel 2, has several functions including the regulation of cell
volume: membrane potential stabilization, signal transduction
and transepithelial transport. It has been associated with different
epilepsy modes (Saint-Martin et al., 2009; Cukier et al., 2014)
and leukoencephalopathy (Gaitán-Peñas et al., 2017). CHRD and
CLCN2 show co-expression which could be due to their close
proximity, both belong to a gene cluster at 3q27. Interestingly,
CLCN2 shows co-expression with TREM2 which, other than
being an AD risk gene, is known to cause leukoencephalopathy
in PLOSL (polycystic lipomembranous osteodysplasia with
sclerosing leukoencephalopathy), also known as Nasu-Hakola
disease.

PTK2B, Protein Tyrosine Kinase 2 Beta, was described as an
AD risk locus in the largest GWAS meta-analysis conducted to
date (Lambert et al., 2013), and later corroborated by others
(Beecham et al., 2014; Wang et al., 2015). The protein encoded
by PTK2B is a member of the focal adhesion kinase (FAK)
family that can be activated by changes in intracellular calcium
levels, which are disrupted in AD brains. Its activation regulates
neuronal activity such as mitogen-activated protein kinase
(MAPK) signaling (Rosenthal and Kamboh, 2014). PTK2B could
also be involved in hippocampal synaptic function (Lambert
et al., 2013). Although there is no co-expression or genetic
interaction between CLCN2 and PTK2B, both are involved in
regulation of ion transport. Additionally, PTK2B is involved in
regulation of lipidicmetabolic processes likeAPOE, a cholesterol-
related gene. Although no association has yet been reported
between APOE and HDLBP, the High-Density Lipoprotein
Binding Protein, the latter plays a role in cell sterol metabolism,
protecting cells from over-accumulation of cholesterol, which has
been reported as risk factor for atherosclerotic vascular diseases.

CPAMD8, C3 and PZP Like, Alpha-2-Macroglobulin Domain
Containing 8, has been previously associated with neurological
conditions other than AD. Common variants in CPAMD8 were
found among top markers associated with multiple sclerosis
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(Baranzini et al., 2009). Missense and frameshift variants
in CPAMD8 were identified in three families affected with
Anterior Segment Dysgenesis (Cheong et al., 2016). According to
the UKBiobank PheWeb (http://pheweb.sph.umich.edu:5000/),
CPAMD8 has a 2.9 × 10−9 p-value for its association with AD.
We did not find any shared pathway between CPAMD8 and
known AD genes in the GeneMANIA network, even though
it seems to have a genetic interaction with APP (Lin et al.,
2010). In our study CPAMD8 was identified as a candidate
gene (with p < 1 × 10−4) for AD by at least nine gene-based
methods from different software, and we found that several
variants within this gene had varying degrees of segregation in
more than twenty families. Variant p.(Ser1103Ala) segregates
with disease status in two families with two and three carriers
respectively, and is present in another two families. Variant
p.(His465Arg) segregates with disease status in five families with
two or three carriers per family and is present in another 11
families. Variant p.(Arg1380Cys) is private to a family with three
carriers, p.(Ala1492Pro) is private to a family with five carriers,
and p.(Val521Met) is private to a family with three carriers.

MAS1L,MAS1 Proto-Oncogene Like, is a G Protein-Coupled
Receptor. Members of this family of membrane proteins are
activated by a wide spectrum of ligands and modulate the activity
of different signaling pathways in a ligand-specific manner. Aly
et al. (2008) described polymorphisms in the region of the
UBD/MAS1L genes that are associated with type-1 diabetes.

The immune system and the integrity of the blood-brain
barrier are key factors for Alzheimer disease.NLRP9, NLR Family
Pyrin Domain Containing 9, has been involved in inflammation
response. Nyúl-Tóth et al. (2017) found NLRP9 expressed in
cerebral endothelial cells and, at much lower levels, in brain
pericytes; and another member of the NLP family (NLRP1) has
been associated with AD (Pontillo et al., 2012).

We have reviewed more than 22 algorithms from eight
different software available for gene-based analyses in complex
families. After a thorough examination of the performance of
these tests under different scenarios, we present a methodology
to identify genes associated with the studied phenotype. We have
applied this methodology to 285 European-American families
affected with late onset Alzheimer disease (LOAD) and we
identified six candidate genes with suggestive or genome-wide
significant p-values across different software and algorithms.
Based on the consistency of our results, we are confident that
some of these genes may play a role in AD pathology and
therefore are of interest to follow up in replication and functional
studies.
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Figure S1 | Schematic representation of the bioinformatics pipeline used in this

study to filter and combine the information from whole exome sequencing (WES)

and whole genome sequencing (WGS).

Table S1 | Structure of the families used in this study with detail of the number of

individuals (IDs) sequenced per family, number of cases (CA), number of controls

(CO), number of females (Fe) and number of males (Ma).The first 25 families were

employed in the simulation analysis.

Table S2 | Design of simulated “GENE-A” across 25 families. Scenarios

5FCx0FNC, 5FCx5FNC, 5FCx10FNC, 5FCx15FNC, 5FCx20FNC.

Table S3 | Comparison of kinship matrices for Fam#1 and Fam#2.

REFERENCES

Aly, T. A., Baschal, E. E., Jahromi, M. M., Fernando, M. S., Babu, S. R., Fingerlin, T.
E., et al. (2008). Analysis of single nucleotide polymorphisms identifies major
type 1A diabetes locus telomeric of the major histocompatibility complex.
Diabetes 57, 770–776. doi: 10.2337/db07-0900

Balding, D. J., and Nichols, R. A. (1995). A method for quantifying differentiation
between populations at Multi-Allelic Loci and Its implications for investigating
identity and paternity. Genetica 96, 3–12. doi: 10.1007/BF01441146

Bansal, V., Libiger, O., Torkamani, A., and Schork, N. J. (2010). Statistical analysis
strategies for association studies involving rare variants. Nat. Rev. Genet. 11,
773–785. doi: 10.1038/nrg2867

Baranzini, S. E., Wang, J., Gibson, R. A., Galwey, N., Naegelin, Y., Barkhof,
F., et al. (2009). Genome-wide association analysis of susceptibility and
clinical phenotype in multiple sclerosis. Hum. Mol. Genet. 18, 767–778.
doi: 10.1093/hmg/ddn388

Beecham, G. W., Hamilton, K., Naj, A. C., Martin, E. R., Huentelman, M., Myers,
A. J., et al. (2014). Genome-wide association meta-analysis of neuropathologic
features of Alzheimer’s disease and related dementias. PLoS Genet. 10:e1004606.
doi: 10.1371/journal.pgen.1004606

Chen, C., Manichaikul, A., and Rich, S. S. (2009). A generalized family-based
association test for dichotomous traits. Am. J. Hum. Genet. 85, 364–376.
doi: 10.1016/j.ajhg.2009.08.003

Cheong, C., Hentschel, L., Davidson, A. E., Gerrelli, D., Davie, R., Rizzo, R.,
et al. (2016). Mutations in CPAMD8 cause a unique form of autosomal-
recessive anterior segment dysgenesis. Am. J. Hum. Genet. 99, 1338–1352.
doi: 10.1016/j.ajhg.2016.09.022

Choi, S., Lee, S., Cichon, S., Nöthen, M. M., Lange, C., Park, T., et al. (2014).
FARVAT: a family-based rare variant association test. Bioinformatics 30,
3197–3205. doi: 10.1093/bioinformatics/btu496

Cingolani, P., Platts, A., Wang le L., Melissa Coon, W., Nguyen, T., Wang, L., et al.
(2012). A Program for annotating and predicting the effects of single nucleotide

Frontiers in Neuroscience | www.frontiersin.org 17 April 2018 | Volume 12 | Article 209

https://www.frontiersin.org/articles/10.3389/fnins.2018.00209/full#supplementary-material
https://doi.org/10.2337/db07-0900
https://doi.org/10.1007/BF01441146
https://doi.org/10.1038/nrg2867
https://doi.org/10.1093/hmg/ddn388
https://doi.org/10.1371/journal.pgen.1004606
https://doi.org/10.1016/j.ajhg.2009.08.003
https://doi.org/10.1016/j.ajhg.2016.09.022
https://doi.org/10.1093/bioinformatics/btu496
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Fernández et al. Gene-Based Family-Based Methods in Alzheimer Disease

polymorphisms, SnpEff: SNPs in the genome of drosophila melanogaster strain
w1118; Iso-2; Iso-3. Fly (Austin) 6, 80–92. doi: 10.4161/fly.19695

Cirulli, E. T., and Goldstein, D. B. (2010). Uncovering the roles of rare variants
in common disease through whole-genome sequencing. Nat. Rev. Genet. 11,
415–425. doi: 10.1038/nrg2779

Cruchaga, C., Celeste,. M. K., Jin, S. C., Benitez, B. A., Cai, Y., Guerreiro, R.,
et al. (2014). Rare coding variants in the phospholipase D3 gene confer risk
for Alzheimer’s disease. Nature 505, 550–554. doi: 10.1038/nature12825

Cruchaga, C., Del-Aguila, J. L., Saef, B., Black, K., Fernandez, M. V., Budde, J., et al.
(2017). Polygenic risk score of sporadic late-onset Alzheimer’s disease reveals a
shared architecture with the familial and early-onset forms.Alzheimers Dement.
14, 205–214. doi: 10.1016/j.jalz.2017.08.013

Cruchaga, C., Haller, G., Chakraverty, S., Mayo, K., Vallania, F. L.M., Mitra,
R. D., et al. (2012). Rare variants in APP, PSEN1 and PSEN2 increase
risk for AD in Late-onset Alzheimer’s disease families. PLoS ONE 7:e31039.
doi: 10.1371/journal.pone.0031039

Cukier, H. N., Dueker, N. D., Slifer, S. H., Lee, J. M., Whitehead, P. L, Lalanne,
E., et al. (2014). Exome sequencing of extended families with autism reveals
genes shared across neurodevelopmental and neuropsychiatric disorders. Mol.

Autism 5:1. doi: 10.1186/2040-2392-5-1
De, G., Yip, W., Ionita-Laza, I., Laird, N., and Amos, C. I. (2013).

Rare variant analysis for family-based design. PLoS ONE 8:e48495.
doi: 10.1371/journal.pone.0048495

Farrer, L. A., Cupples, L. A., Haines, J. L., Hyman, B., Kukull, W. A., Mayeux,
R., et. al. (1997). Effects of age, sex, and ethnicity on the association between
apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE
and Alzheimer disease meta analysis consortium. JAMA 278, 1349–1356.
doi: 10.1001/jama.1997.03550160069041

Fernández, M. V., Kim, J. H., Budde, J. P., Black, K., Medvedeva, A.,
Saef, B., et al. (2017). Analysis of neurodegenerative mendelian genes
in clinically diagnosed Alzheimer disease. PLOS Genet. 13:e1007045.
doi: 10.1371/journal.pgen.1007045

Frazer, K. A., Murray, S. S., Schork, N. J., and Topolm, E. J. (2009). Human genetic
variation and its contribution to complex traits. Nat. Rev. Genet. 10, 241–251.
doi: 10.1038/nrg2554

Gaitán-Peñas, H., Apaja, P. M., Arnedo, T., Castellanos, A., Elorza-Vidal, X.,
Soto, D., et al. (2017). Leukoencephalopathy-Causing CLCN2 mutations are
associated with impaired Cl–channel function and trafficking. J. Physiol. 595,
6993–7008. doi: 10.1113/JP275087

Guerreiro, R. J., Lohmann, E., Brás, J. M., Gibbs, J. R., Rohrer, J. D., Gurunlian, N.,
et al. (2013). Using exome sequencing to reveal mutations in TREM2 presenting
as a frontotemporal dementia-like syndrome without bone involvement. JAMA

Neurol. 70, 78–84. doi: 10.1001/jamaneurol.2013.579
He, Z., O’Roak, B. J., Smith, J. D., Wang, G., Hooker, S., Santos-Cortez, R. L. P.,

et al. (2014). Rare-variant extensions of the transmission disequilibrium test:
application to autism exome sequence data. Am. J. Hum. Genet. 94, 33–46.
doi: 10.1016/j.ajhg.2013.11.021

He, Z., Zhang, D., Renton, A. E., Li, B., Zhao, L., Wang, G. T., et al. (2017). The
rare-variant generalized disequilibrium test for association analysis of nuclear
and extended pedigrees with application to Alzheimer disease WGS data. Am.

J. Hum. Genet. 100, 193–204. doi: 10.1016/j.ajhg.2016.12.001
Horvath, S., Xu, X., and Laird, N. M. (2001). The family based association test

method: strategies for studying general genotype–phenotype associations. Eur.
J. Hum. Genet. 9, 301–306. doi: 10.1038/sj.ejhg.5200625

Ionita-Laza, I., Lee, S., Makarov, V., Buxbaum, J. D., and Lin, X. (2013).
Family-based association tests for sequence data, and comparisons with
population-based association tests. Eur. J. Hum. Genet. 21, 1158–1162.
doi: 10.1038/ejhg.2012.308

Kang, H. M., Sul, J. H., Service, S. K., Zaitlen, N. A., Kong, S., Freimer,
N. B., et al. (2010). Variance component model to account for sample
structure in genome-wide association studies. Nat. Genet. 42, 348–354.
doi: 10.1038/ng.548

Kazma, R., and Bailey, J. N. (2011). Population-based and family-based designs
to analyze rare variants in complex diseases. Genet. Epidemiol. 35(Suppl. 1).
S41–S47. doi: 10.1002/gepi.20648

Laird, N. M., Horvath, S., and Xu, X. (2000). Implementing a unified approach
to family-based tests of association. Genet. Epidemiol. 19(Suppl. 1). S36–S42.
doi: 10.1002/1098-2272(2000)19:1+ <::AID-GEPI6>3.0.CO;2-M

Laird, N. M., and Lange, C. (2006). Family-based designs in the age of large-
scale gene-association studies. Nat. Rev. Genet. 7, 385–394. doi: 10.1038/
nrg1839

Lambert, J. C., Ibrahim-Verbaas, C. A., Harold, D., Naj, A. C., Sims, R.,
Bellenguez, C., et al. (2013). Meta-analysis of 74,046 individuals identifies 11
new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45, 1452–1458.
doi: 10.1038/ng.2802

Lange, C., and Laird, N. M. (2002). On a general class of conditional tests
for family-based association studies in genetics: the asymptotic distribution,
the conditional power, and optimality considerations. Genet. Epidemiol. 23,
165–180. doi: 10.1002/gepi.209

Lee, S., Abecasis, G. R., Boehnke, M., and Lin, X. (2014). Rare-variant association
analysis: study designs and statistical tests. Am. J. Hum. Genet. 95, 5–23.
doi: 10.1016/j.ajhg.2014.06.009

Lee, S., Emond, M. J., Bamshad, M. J., Barnes, K. C., Rieder, M. J.,
Nickerson, D. A., et al. (2012). Optimal unified approach for rare-variant
association testing with application to small-sample case-control whole-exome
sequencing studies. Am. J. Hum. Genet. 91, 224–237. doi: 10.1016/j.ajhg.2012.
06.007

Lek, M., Karczewski, K. J., Minikel, E. V., Samocha, K. E., Banks, E., Fennell, T.,
et al. (2016). Analysis of protein-coding genetic variation in 60,706 humans.
Nature 536, 285–291. doi: 10.1038/nature19057

Li, B., and Leal, S. M. (2008). Methods for detecting associations with rare variants
for common diseases: application to analysis of sequence data. Am. J. Hum.

Genet. 83, 311–321. doi: 10.1016/j.ajhg.2008.06.024
Li, M., Boehnke, M., and Abecasis, G. R. (2006). Efficient study designs for test of

genetic association using sibship data and unrelated cases and controls. Am. J.

Hum. Genet. 78, 778–792. doi: 10.1086/503711
Lin, A., Wang, R. T., Ahn, S., Park, C. C., and Smith, D. J. (2010). A genome-wide

map of human genetic interactions inferred from radiation hybrid genotypes.
Genome Res. 20, 1122–1132. doi: 10.1101/gr.104216.109

Manolio, T. A., Francis, A., Collins, S., Cox, N. J., Goldstein, D. B., and Hindorff,
L. A. (2009). Finding the missing heritability of complex diseases. Nature 461,
747–753. doi: 10.1038/nature08494

Morgenthaler, S., and Thilly, W. G. (2007). A Strategy to discover genes that carry
multi-allelic or mono-allelic risk for common diseases: a Cohort Allelic Sums
Test (CAST).Mutat. Res. 615, 28–56. doi: 10.1016/j.mrfmmm.2006.09.003

Neale, B. M., Rivas, M. A., Voight, B. F., Altshuler, D., Devlin, B., Orho-Melander,
M., et al. (2011). Testing for an unusual distribution of rare variants. PLoS
Genet. 7:e1001322. doi: 10.1371/journal.pgen.1001322

Neale, B. M., and Sham, P. C. (2004). The future of association studies: gene-based
analysis and replication. Am. J. Hum. Genet. 75, 353–362. doi: 10.1086/423901

Nyúl-Tóth, Á., Kozma, M., Nagyoszi, P., Nagy, K., Fazakas, C., Haskó, J., et al.
(2017). Expression of pattern recognition receptors and activation of the non-
canonical inflammasome pathway in brain pericytes. Brain Behav. Immun. 64,
220–231. doi: 10.1016/j.bbi.2017.04.010

Ott, J., Kamatani, Y., and Lathrop, M. (2011). Family-based designs for genome-
wide Association Studies. Nat. Rev. Genet. 12, 465–474. doi: 10.1038/
nrg2989

Pontillo, A., Catamo, E., Arosio, B., Mari, D., and Crovella, S.
(2012). NALP1/NLRP1 genetic variants are associated with
Alzheimer disease. Alzheimer Dis. Assoc. Disord. 26, 277–281.
doi: 10.1097/WAD.0b013e318231a8ac

Price, A. L., Kryukov, G. V., de Bakker, P. I.W., Purcell, S. M., Staples, J., Wei,
LJ., et al. (2010). Pooled association tests for rare variants in exon-resequencing
studies. Am. J. Hum. Genet. 86, 832–838. doi: 10.1016/j.ajhg.2010.04.005

R Core Team (2017). R: A Language and Environment for Statistical Computing.
Vienna: R Foundation for Statistical Computing. Available online at:
www.R-project.org/

Ridge, P. G., Hoyt, K. B., Boehme, K., Mukherjee, S., Crane, P. K.,
Haines, J. L., et al. (2016). Assessment of the genetic variance of
late-onset Alzheimer’s disease. Neurobiol. Aging 41, 200.e13–200.e20.
doi: 10.1016/j.neurobiolaging.2016.02.024

Rosenthal, S. L, and Kamboh, M. I. (2014). Late-onset Alzheimer’s disease genes
and the potentially implicated pathways. Curr. Genet. Med. Rep. 22, 85–101.
doi: 10.1007/s40142-014-0034-x

Saint-Martin, C., Gauvain, G., Teodorescu, G., Gourfinkel-An, I., Fedirko, E.,
Weber, Y. G., et al. (2009). Two novel CLCN2 mutations accelerating chloride

Frontiers in Neuroscience | www.frontiersin.org 18 April 2018 | Volume 12 | Article 209

https://doi.org/10.4161/fly.19695
https://doi.org/10.1038/nrg2779
https://doi.org/10.1038/nature12825
https://doi.org/10.1016/j.jalz.2017.08.013
https://doi.org/10.1371/journal.pone.0031039
https://doi.org/10.1186/2040-2392-5-1
https://doi.org/10.1371/journal.pone.0048495
https://doi.org/10.1001/jama.1997.03550160069041
https://doi.org/10.1371/journal.pgen.1007045
https://doi.org/10.1038/nrg2554
https://doi.org/10.1113/JP275087
https://doi.org/10.1001/jamaneurol.2013.579
https://doi.org/10.1016/j.ajhg.2013.11.021
https://doi.org/10.1016/j.ajhg.2016.12.001
https://doi.org/10.1038/sj.ejhg.5200625
https://doi.org/10.1038/ejhg.2012.308
https://doi.org/10.1038/ng.548
https://doi.org/10.1002/gepi.20648
https://doi.org/10.1002/1098-2272(2000)19:1+<::AID-GEPI6>3.0.CO;2-M
https://doi.org/10.1038/nrg1839
https://doi.org/10.1038/ng.2802
https://doi.org/10.1002/gepi.209
https://doi.org/10.1016/j.ajhg.2014.06.009
https://doi.org/10.1016/j.ajhg.2012.06.007
https://doi.org/10.1038/nature19057
https://doi.org/10.1016/j.ajhg.2008.06.024
https://doi.org/10.1086/503711
https://doi.org/10.1101/gr.104216.109
https://doi.org/10.1038/nature08494
https://doi.org/10.1016/j.mrfmmm.2006.09.003
https://doi.org/10.1371/journal.pgen.1001322
https://doi.org/10.1086/423901
https://doi.org/10.1016/j.bbi.2017.04.010
https://doi.org/10.1038/nrg2989
https://doi.org/10.1097/WAD.0b013e318231a8ac
https://doi.org/10.1016/j.ajhg.2010.04.005
http://www.R-project.org/
https://doi.org/10.1016/j.neurobiolaging.2016.02.024
https://doi.org/10.1007/s40142-014-0034-x
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Fernández et al. Gene-Based Family-Based Methods in Alzheimer Disease

channel deactivation are associated with idiopathic generalized epilepsy. Hum.

Mutat. 30, 397–405. doi: 10.1002/humu.20876
Schaid, D. J., McDonnell, S. K., Sinnwell, J. P., and Thibodeau, S. N. (2013).

Multiple genetic variant association testing by collapsing and kernel methods
with pedigree or population structured data. Genet. Epidemiol. 37, 409–418.
doi: 10.1002/gepi.21727

Sims, R., van der Lee, S. J., Naj, A. C., Bellenguez, C., Badarinarayan, N.,
Jakobsdottir, J., et al. (2017). Rare coding variants in PLCG2, ABI3, and TREM2
implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat.
Genet. 49, 1373–1384. doi: 10.1038/ng.3916

Smith, M., Herrell, S., Lusher, M., Lako, L., Simpson, C., and Wiestner, A. (1999).
Genomic organisation of the human chordin gene and mutation screening
of candidate cornelia de lange syndrome genes. Hum. Genet. 105, 104–111.
doi: 10.1007/s004399900068

Spielman, R. S., McGinnis, R. E., and Ewens, W. J. (1993). Transmission test for
linkage disequilibrium: the insulin gene region and insulin-dependent diabetes
mellitus (IDDM). Am. J. Hum. Genet. 52, 506–516.

Sul, J. H., Cade, B. E., Cho, M. H., Qiao, D., Silverman, E. K., Redline,
S., et al. (2016). Increasing generality and power of rare-variant tests
by utilizing extended pedigrees. Am. J. Hum. Genet. 99, 846–859.
doi: 10.1016/j.ajhg.2016.08.015

Thornton, T., and McPeek, M. S. (2007). Case-control association testing with
related individuals: a more powerful quasi-likelihood score test. Am. J. Hum.

Genet. 81, 321–337. doi: 10.1086/519497
Wang, X., Lee, S., Zhu, X., Redline, S., and Lin, X. (2013). GEE-based SNP set

association test for continuous and discrete traits in family-based association
studies. Genet. Epidemiol. 37, 778–786. doi: 10.1002/gepi.21763

Wang, X., Lopez, O. L., Sweet, R. A., Becker, J. T., Dekosky, S. T., Barmada,
M. M., et al. (2015). Genetic determinants of disease progression in
Alzheimer’s disease. J. Alzheimers Dis. 43, 649–655. doi: 10.3233/JAD-
140729

Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. New York, NY:
Springer-Verlag.

Wijsman, E. M., Pankratz, N. D., Choi, Y., Rothstein, J. H., Faber, K. M., Cheng, R.,
et al. (2011). Genome-wide association of familial late-onset Alzheimer’s disease
replicates BIN1 and CLU and nominates CUGBP2 in interaction with APOE.
PLoS Genet. 7:e1001308. doi: 10.1371/journal.pgen.1001308

Wu, M. C., Lee, S., Cai, T., Li, Y., Boehnke, M., and Lin, X. (2011). Rare-variant
association testing for sequencing data with the sequence kernel association
test. Am. J. Hum. Genet. 89, 82–93. doi: 10.1016/j.ajhg.2011.05.029

Yan, Q., Tiwari, H. K., Yi, N., Gao, G., Zhang, K., Lin, W. Y., et al.
(2015). A sequence kernel association test for dichotomous traits in family
samples under a generalized linear mixed model. Hum. Hered. 79, 60–68.
doi: 10.1159/000375409

Zhou, X., and Stephens, M. (2012). Genome-wide efficient mixed-model analysis
for association studies. Nat. Genet. 44, 821–824. doi: 10.1038/ng.2310

Zöllner, S., Wen, X., Hanchard, N. A., Herbert, M. A., Ober, C., and Pritchard, J. K.
(2004). Evidence for extensive transmission distortion in the human genome.
Am. J. Hum. Genet. 74, 62–72. doi: 10.1086/381131

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Fernández, Budde, Del-Aguila, Ibañez, Deming, Harari, Norton,

Morris, Goate, NIA-LOAD family study group, NCRAD and Cruchaga. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroscience | www.frontiersin.org 19 April 2018 | Volume 12 | Article 209

https://doi.org/10.1002/humu.20876
https://doi.org/10.1002/gepi.21727
https://doi.org/10.1038/ng.3916
https://doi.org/10.1007/s004399900068
https://doi.org/10.1016/j.ajhg.2016.08.015
https://doi.org/10.1086/519497
https://doi.org/10.1002/gepi.21763
https://doi.org/10.3233/JAD-140729
https://doi.org/10.1371/journal.pgen.1001308
https://doi.org/10.1016/j.ajhg.2011.05.029
https://doi.org/10.1159/000375409
https://doi.org/10.1038/ng.2310
https://doi.org/10.1086/381131
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Washington University School of Medicine
	Digital Commons@Becker
	2018

	Evaluation of gene-based family-based methods to detect novel genes associated with familial late onset Alzheimer disease
	Maria V. Fernandez
	John Budde
	Jorge L. Del-Aguila
	Laura Ibanez
	Yuetiva Deming
	See next page for additional authors
	Recommended Citation
	Authors


	Evaluation of Gene-Based Family-Based Methods to Detect Novel Genes Associated With Familial Late Onset Alzheimer Disease
	Introduction
	Materials and Methods
	Cohort
	WUSM Cohort
	ADSP Cohort

	Sequencing
	Study Design and Analysis
	Simulated Data
	Candidate Genes
	Genome-Wide Analyses

	Software Tested
	GSKAT
	SKAT
	FSKAT
	EPACTS
	FarVAT
	PedGene
	RVGDT
	RareIBD


	Results
	Simulated Dataset
	Candidate Genes-APOE
	Genome-Wide Analyses
	Kinship Matrices
	Collapsing Tests
	Variance Component Tests
	Transmission Disequilibrium Tests
	Pros and Cons of the Different Gene-Based Methods

	Candidate Genes for FASe Project

	Discussion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


