43 research outputs found

    Nuevos modelos para estimar la capacidad de fijación de carbono de las coníferas españolas

    Get PDF
    Quantifying the carbon balance in forests is one of the main challenges in forest management. Forest carbon stocks are usually estimated indirectly through biomass equations applied to forest inventories, frequently considering different tree biomass components. The aim of this study is to develop systems of equations for predicting tree biomass components for the main forest softwood species in Spain: Abies alba Mill., A. pinsapo Boiss., Juniperus thurifera L., Pinus canariensis Sweet ex Spreng., P. halepensis Mill., P. nigra Arn., P. pinaster Ait., P. pinea L., P. sylvestris L., P. uncinata Mill. For each species, a system of additive biomass models was fitted using seemingly unrelated regression. Diameter at the breast height and total height were used as independent variables. Diameter appears in all component models, while tree height was included in the stem component model of all species and in some branch component equations. Total height was included in order to improve biomass estimations at different sites. These biomass models were compared to previously available equations in order to test their accuracy and it was found that they yielded better fitting statistics in all cases. Moreover, the models fulfil the additivity property. We also developed root:shoot ratios in order to determine the partitioning into aboveground and belowground biomass. A number of differences were found between species, with a minimum of 0.183 for A. alba and a maximum of 0.385 for P. uncinata. The mean value for the softwood species studied was 0.265. Since the Spanish National Forest Inventory (NFI) records species, tree diameter and height of sample trees, these biomass models and ratios can be used to accurately estimate carbon stocks from NFI data.Conocer el balance de carbono en los bosques es uno de los principales retos dentro de la gestión forestal. Habitualmente, la estimación de carbono en los bosques se realiza de manera indirecta, mediante la aplicación de modelos de diferentes fracciones de biomasa a los datos de inventario forestal. Para ello, en este estudio se han desarrollado sistemas de ecuaciones para estimar la biomasa forestal de las principales coníferas de los bosques de España: Abies alba Mill., A. pinsapo Boiss., Juniperus thurifera L., Pinus canariensis Sweet ex Spreng., P. halepensis Mill., P. nigra Arn., P. pinaster Ait., P. pinea L., P. sylvestris L., P. uncinata Mill. Se ha usado la metodología de mínimos cuadrados generalizados conjuntos, para el cumplimiento de la aditividad entre componentes. Como variables independientes se utilizaron el diámetro normal y la altura total del árbol. El diámetro aparece en todas las ecuaciones como variable significativa, mientras que la altura aparece también en todos los modelos para la biomasa de fuste y en algunos modelos para las ramas. Con la inclusión de la altura total se mejoran las estimaciones de los modelos en diferentes sitios. Los modelos ajustados fueron comparados con otras ecuaciones publicadas para comprobar la precisión, presentando mejores estadísticos en todos los casos. Mediante el uso de esta metodología, las ecuaciones cumplen la propiedad aditiva. Además, se han desarrollado relaciones específicas entre la parte radical y parte aérea, para conocer como se realiza el reparto de biomasa. Se han encontrado diferencias entre especies, alcanzándose un mínimo de 0,183 para A. alba y un máximo de 0,385 para P. uncinata, siendo el valor medio para estas especies de coníferas estudiadas de 0,265.Como el Inventario Forestal Nacional (IFN) identifica para todas las especies medidas el diámetro normal y la altura total de todos los árboles inventariados, estos modelos y relaciones ajustadas pueden ser aplicados con precisión en la estimación de cantidades de carbono a partir de aquellos datos

    Effect of species proportion definition on the evaluation of growth in pure vs. mixed stands

    Get PDF
    Aim of study: The aim of this paper is to compare differences in growth per hectare of species in pure and mixed stands as they result from different definitions of species proportions.Area of Study: We used the data of the Spanish National Forest Inventory for Scots pine and beech mixtures in the province of Navarra and for Scots pine and Pyrenean oak mixtures in the Central mountain range and the North Iberic mountain range.Material and Methods: Growth models were parameterized with the species growth related to its proportion as dependent variable, and dominant height, quadratic mean diameter density, and species proportion as independent variables. As proportions we use once proportions by basal area or by stand density index and once these proportions considering the species specific maximum densities.Main Results: In the pine – beech mixtures, where the maximum densities do not differ very much between species, the mixing effects are very similar, independent of species proportion definitions. In the pine – oak mixture, where the maximum densities in terms of basal area are very different, the equations using the proportions calculated without reference to the maximum densities, result in a distinct overestimation of the mixing effects on growth.Research highlights: When comparing growth per hectare of a species in a mixed stand with that of a pure stand, the species proportion must be described as a proportion by area considering the maximum density for the given species, wrong mixing effects could be introduced by inappropriate species proportion definitions.Keywords: Mixing effects; proportion by area; Stand Density Index; overyielding; Pinus sylvestris L.; Fagus sylvatica L.; Quercus pyrenaica Willd.

    Dominant height growth equations including site attributes in the generalized algebraic difference approach

    Get PDF
    We present a new dynamic dominant height growth model based on Cieszewski’s generalized algebraic difference approach (GADA) advanced dynamic site equation strengthened by the use of explicit climate and soil variables (i.e., H = f(H0,T0, T, site conditions)). The results suggest that the inclusion of climatic variables would improve the applicability of the inter-regional model in regions in which climate and soil type lead to intra-regional variability. The new model reduces the bias present in a previous dynamic model that did not include climatic attributes and improves the model efficiency across the different age classes. Climate has a multiplicative effect on dominant tree growth in the early development stages (<20 years) and an additive effect in older stands

    Differences in stem radial variation between Pinus pinaster Ait. and Quercus pyrenaica Willd. may release inter-specific competition

    Get PDF
    Species complementarity by morphological and physiological trait differences could cause distinct temporal and spatial use of resources. Accordingly, mixed stands may enhance production, biodiversity and/or provide a better adaptation to future climate conditions. We aim to identify species differences in intra-annual stem radial variation patterns, and to recognize species-specific responses to contrasting weather conditions at key intraannual growth phases. Stem radial variation was recorded from high temporal resolution point dendrometers (2012-2014) installed on twelve dominant maritime pine and Pyrenean oak trees in two mixed stands in central Spain. Species differences in stem radial variation were analyzed by synchrony statistics, intra-annual pattern modelling, and evaluating the dependence of main intra-annual growth phases on climate conditions. Both species showed important differences on intra-annual radial increment pattern despite general stem radial variation synchrony. Radial increment onset was earlier for maritime pine during the spring and rainy autumns. Species-specific responses to weather indicate that stem radial variation increased with autumn temperature in maritime pine, but decreased in Pyrenean oak trees. However, summer vapor pressure deficit may reduce stem radial variation for maritime pine. Therefore, maritime pine would adapt more efficiently to warmer temperatures associated with climate change, although summer water stress may reduce this competitive bonus

    Predictive Value of Skeletal Muscle Mass in Recurrent/Metastatic Head and Neck Squamous Cell Carcinoma Patients Treated With Immune Checkpoint Inhibitors

    Get PDF
    Background Reduced muscle mass has been associated with increased treatment complications in several tumor types. We evaluated the impact of skeletal muscle index (SMI) on prognosis and immune-related adverse events (IrAEs) in a cohort of recurrent/metastatic (R/M) head and neck squamous cell carcinoma (HNSCC) treated with immune checkpoints inhibitors (ICI). Methods A single-institutional, retrospective study was performed including 61 consecutive patients of R/M HNSCC diagnosed between July 2015 and December 2018. SMI was quantified using a CT scan at L3 to evaluate body composition. Median baseline SMI was used to dichotomize patients in low and high SMI. Kaplan-Meier estimations were used to detect overall survival (OS) and progression-free survival (PFS). Toxicity was recorded using Common Terminology Criteria for Adverse Event v4.3. Results Patients were 52 men (85.2%) with mean of age 57.7 years (SD 9.62), mainly oral cavity (n = 21; 34.4%). Low SMI was an independent factor for OS in the univariate (HR, 2.06; 95% CI, 1.14-3.73, p = 0.017) and multivariate Cox analyses (HR, 2.99; 95% CI, 1.29-6.94; p = 0.011). PFS was also reduced in patients with low SMI (PFS HR, 1.84; 95% CI, 1.08-3.12; p = 0.025). IrAEs occurred in 29 (47.5%) patients. There was no association between low SMI and IrAEs at any grade (OR, 0.56; 95% CI, 0.20-1.54; p = 0.261). However, grades 3 to 4 IrAEs were developed in seven patients of whom three had low SMI. Conclusions Low SMI before ICI treatment in R/M HNSCC patients had a negative impact on OS and PFS. Further prospective research is needed to confirm the role of body composition as a predictive biomarker in ICI treatment

    Timing and duration of drought modulate tree growth response in pure and mixed stands of Scots pine and Norway spruce

    Get PDF
    Climate change is increasing the severity and frequency of droughts around the globe, leading to tree mortality that reduces production and provision of other ecosystem services. Recent studies show that growth of mixed stands may be more resilient to drought than pure stands. The two most economically important and widely distributed tree species in Europe are Norway spruce (Picea abies (L.) Karst) and Scots pine (Pinus sylvestris L.), but little is known about their susceptibility to drought when coexist. This paper analyses the resilience (resistance, recovery rate and recovery time) at individual-tree level using a network of tree-ring collections from 22 sites along a climatic gradient from central Europe to Scandinavia. We aimed to identify differences in growth following drought between the two species and between mixed and pure stands, and how environmental variables (climate, topography and site location) and tree characteristics influence them. We found that both the timing and duration of drought drive the different responses between species and compositions. Norway spruce showed higher vulnerability to summer drought, with both lower resistance and a longer recovery time than Scots pine. Mixtures provided higher drought resistance for both species compared to pure stands, but the benefit decreases with the duration of the drought. Especially climate sensitive and old trees in climatically marginal sites were more affected by drought stress. Synthesis. Promoting Scots pine and mixed forests is a promising strategy for adapting European forests to climate change. However, if future droughts become longer, the advantage of mixed stands could disappear which would be especially negative for Norway spruce

    Maintenance of long-term experiments for unique insights into forest growth dynamics and trends: review and perspectives

    Get PDF
    In this review, the unique features and facts of long-term experiments are presented. Long-term experimental plots provide information of forest stand dynamics which cannot be derived from forest inventories or small temporary plots. Most comprise unthinned plots which represent the site specific maximum stand density as an unambiguous reference. By measuring the remaining as well as the removed stand, the survey of long-term experiments provides the total production at a given site, which is most relevant for examining the relationship between site conditions and stand productivity on the one hand and between stand density and productivity on the other. Thus, long-term experiments can reveal the site-specific effect of thinning and species mixing on stand structure, production and carbon sequestration. If they cover an entire rotation or even the previous and following generation on a given site, they reveal a species' long-term behaviour and any growth trends caused by environmental changes. Second, we exploit the unique data of European long-term experiments, some of which have been surveyed since 1848. We show the long-term effect of different density regimes on stand dynamics and an essential trade-off between total stand volume production and mean tree size. Long-term experiments reveal that tree species mixing can significantly increase stand density and productivity compared with monospecific stands. Thanks to surveys spanning decades or even a century, we can show the changing long-term-performance of different provenances and acceleration of stand production caused by environmental change, as well as better understand the growth dynamics of natural forests. Without long-term experiments forest science and practice would be not in a position to obtain such findings which are of the utmost relevance for science and practice. Third, we draw conclusions and show perspectives regarding the maintenance and further development of long-term experiments. It would require another 150years to build up a comparable wealth of scientific information, practical knowledge, and teaching and training model examples. Although tempting, long-term experiments should not be sacrificed for cost-cutting measures. Given the global environmental change and the resulting challenges for sustainable management, the network of long-term experiments should rather be extended regarding experimental factors, recorded variables and inter- and transdisciplinary use for science and practice

    Mortality reduces overyielding in mixed Scots pine and European beech stands along a precipitation gradient in Europe

    Get PDF
    Many studies show that mixed species stands can have higher gross growth, or so-called overyielding, compared with monocultures. However, much less is known about mortality in mixed stands. Knowledge is lacking, for example, of how much of the gross growth is retained in the standing stock and how much is lost due to mor-tality. Here, we addressed this knowledge gap of mixed stand dynamics by evaluating 23 middle-aged, unthinned triplets of monospecific and mixed plots of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) repeatedly surveyed over 6-8 years throughout Europe. For explanation of technical terms in this abstract see Box 1.First, mixed stands produced more gross growth (+10%) but less net growth (-28%) compared with the weighted mean growth of monospecific stands. In monospecific stands, 73% of the gross growth was accumu-lated in the standing stock, whereas only 48% was accumulated in mixed stands. The gross overyielding of pine (2%) was lower than that of beech (18%). However, the net overyielding of beech was still 10%, whereas low growth and dropout of pine caused a substantial reduction from gross to net growth.Second, the mortality rates, the self-and alien-thinning strength, and the stem volume dropout were higher in mixed stands than monospecific stands. The main reason was the lower survival of pine, whereas beech persisted more similarly in mixed compared with monospecific stands.Third, we found a 10% higher stand density in mixed stands compared with monospecific stands at the first survey. This superiority decreased to 5% in the second survey.Fourth, the mixing proportion of Scots pine decreased from 46% to 44% between the first and second survey. The more than doubling of the segregation index (S) calculated by Pielou index (S increased from 0.2 to 0.5), indicated a strong tendency towards demixing due to pine.Fifth, we showed that with increasing water supply the dropout fraction of the gross growth in the mixture slightly decreased for pine, strongly increased for beech, and also increased for the stand as a whole. We discuss how the reduction of inter-specific competition by thinning may enable a continuous benefit of diversity and overyielding of mixed compared with monospecific stands of Scots pine and European beech

    European Mixed Forests: definition and research perspectives

    Get PDF
    peer-reviewedAim of study: We aim at (i) developing a reference definition of mixed forests in order to harmonize comparative research in mixed forests and (ii) briefly review the research perspectives in mixed forests. Area of study: The definition is developed in Europe but can be tested worldwide. Material and methods: Review of existent definitions of mixed forests based and literature review encompassing dynamics, management and economic valuation of mixed forests. Main results: A mixed forest is defined as a forest unit, excluding linear formations, where at least two tree species coexist at any developmental stage, sharing common resources (light, water, and/or soil nutrients). The presence of each of the component species is normally quantified as a proportion of the number of stems or of basal area, although volume, biomass or canopy cover as well as proportions by occupied stand area may be used for specific objectives. A variety of structures and patterns of mixtures can occur, and the interactions between the component species and their relative proportions may change over time. The research perspectives identified are (i) species interactions and responses to hazards, (ii) the concept of maximum density in mixed forests, (iii) conversion of monocultures to mixed-species forest and (iv) economic valuation of ecosystem services provided by mixed forests. Research highlights: The definition is considered a high-level one which encompasses previous attempts to define mixed forests. Current fields of research indicate that gradient studies, experimental design approaches, and model simulations are key topics providing new research opportunities.The networking in this study has been supported by COST Action FP1206 EuMIXFOR
    corecore