80 research outputs found
High power impulse magnetron sputtering discharges: Instabilities and plasma self-organization
We report on instabilities in high power impulse magnetron sputtering plasmas which are likely to be of the generalized drift wave type. They are characterized by well defined regions of high and low plasma emissivity along the racetrack of the magnetron and cause periodic shifts in floating potential. The azimuthal mode number m depends on plasma current, plasma density, and gas pressure. The structures rotate in × direction at velocities of ∼10 km s−1 and frequencies up to 200 kHz. Collisions with residual gas atoms slow down the rotating wave, whereas increasing ionization degree of the gas and plasma conductivity speeds it up
In situ assessment of carbon nanotube diameter distribution with photoelectron spectroscopy
7 págs.; 6 figs.; 1 tab. ; PACS numberssd: 73.22.2f, 79.60.Jv, 61.46.1wIn situ UV-photoelectron spectroscopy (He I and He II) was performed on multiwalled carbon nanotubes (CNTs) with clearly differentiated diameter distributions. A significant dependence of valence- and conduction-band characteristics on the mean CNT diameter was observed, which was determined by high-resolution TEM and micro-Raman spectroscopy. The decrease of relative intensity of the π states at -3 eV in the He II experiments, indicative of increasing rehybridization between orbitals, was directly correlated with decreasing mean diameters. Furthermore, a progressive broadening of the unoccupied σ* band at 7.6 eV was found in the He I spectra. © 2005 The American Physical Society.J.W.S. is grateful to the Centre Interdisciplinaire de Microscopie
Electronique sCIMEd at the Ecole Polytechnique
Fédérale de Lausanne sEPFLd for access to TEM and technical
support. We also thank the National Centre of Competence
in Research for Nanosciences NCCRd and the Swiss
National Foundation for financial support.Peer Reviewe
Variations of training load, monotony, and strain and dose-response relationships with maximal aerobic speed, maximal oxygen uptake, and isokinetic strength in professional soccer players
This study aimed to identify variations in weekly training load, training monotony, and training strain across a 10-week period (during both, pre- and in-season phases); and to analyze the dose-response relationships between training markers and maximal aerobic speed (MAS), maximal oxygen uptake, and isokinetic strength. Twenty-seven professional soccer players (24.9±3.5 years old) were monitored across the 10-week period using global positioning system units. Players were also tested for maximal aerobic speed, maximal oxygen uptake, and isokinetic strength before and after 10 weeks of training. Large positive correlations were found between sum of training load and extension peak torque in the right lower limb (r = 0.57, 90%CI[0.15;0.82]) and the ratio agonist/antagonist in the right lower limb (r = 0.51, [0.06;0.78]). It was observed that loading measures fluctuated across the period of the study and that the load was meaningfully associated with changes in the fitness status of players. However, those magnitudes of correlations were small-to-large, suggesting that variations in fitness level cannot be exclusively explained by the accumulated load and loading profile
Effect of Growth Temperature on Bamboo-shaped Carbon–Nitrogen (C–N) Nanotubes Synthesized Using Ferrocene Acetonitrile Precursor
This investigation deals with the effect of growth temperature on the microstructure, nitrogen content, and crystallinity of C–N nanotubes. The X-ray photoelectron spectroscopic (XPS) study reveals that the atomic percentage of nitrogen content in nanotubes decreases with an increase in growth temperature. Transmission electron microscopic investigations indicate that the bamboo compartment distance increases with an increase in growth temperature. The diameter of the nanotubes also increases with increasing growth temperature. Raman modes sharpen while the normalized intensity of the defect mode decreases almost linearly with increasing growth temperature. These changes are attributed to the reduction of defect concentration due to an increase in crystal planar domain sizes in graphite sheets with increasing temperature. Both XPS and Raman spectral observations indicate that the C–N nanotubes grown at lower temperatures possess higher degree of disorder and higher N incorporation
The effect of changing the magnetic field strength on HiPIMS deposition rates
The marked difference in behaviour between HiPIMS and conventional dc or pulsed-dc magnetron sputtering discharges with changing magnetic field strengths is demonstrated through measurements of deposition rate. To provide a comparison between techniques the same circular magnetron was operated in the three excitation modes at a fixed average power of 680 W and a pressure of 0.54 Pa in the non-reactive sputtering of titanium. The total magnetic field strength B at the cathode surface in the middle of the racetrack was varied from 195 to 380 G. DC and pulsed-dc discharges show the expected behaviour that deposition rates fall with decreasing B (here by ~25–40%), however the opposite trend is observed in HiPIMS with deposition rates rising by a factor of 2 over the same decrease in B.
These observations are understood from the stand point of the different composition and transport processes of the depositing metal flux between the techniques. In HiPIMS, this flux is largely ionic and slow post-ionized sputtered particles are subject to strong back attraction to the target by a retarding plasma potential structure ahead of them. The height of this potential barrier is known to increase with increasing B.
From a simple phenomenological model of the sputtered particles fluxes, and using the measured deposition rates from the different techniques as inputs, the combined probabilities of ionization, α, and back attraction, β, of the metal species in HiPIMS has been calculated. There is a clear fall in αβ (from ~0.9 to ~0.7) with decreasing B-field strengths, we argue primarily due to a weakening of electrostatic ion back attraction, so leading to higher deposition rates. The results indicate that careful design of magnetron field strengths should be considered to optimise HiPIMS deposition rates
Acute-phase reactants after paediatric cardiac arrest. Procalcitonin as marker of immediate outcome
<p>Abstract</p> <p>Objective</p> <p>Procalcitonin (PCT) and C reactive protein (CRP) have been used as infection parameters. PCT increase correlates with the infection's severity, course, and mortality. Post-cardiocirculatory arrest syndrome may be related to an early systemic inflammatory response, and may possibly be associated with an endotoxin tolerance. Our objective was to report the time profile of PCT and CRP levels after paediatric cardiac arrest and to assess if they could be use as markers of immediate survival.</p> <p>Materials and methods</p> <p>A retrospective observational study set in an eight-bed PICU of a university hospital was performed during a period of two years. Eleven children younger than 14 years were admitted in the PICU after a cardiac arrest. PCT and CRP plasma concentrations were measured within the first 12 and 24 hours of admission.</p> <p>Results</p> <p>In survivors, PCT values increased 12 hours after cardiac arrest without further increase between 12 and 24 hours. In non survivors, PCT values increased 12 hours after cardiac arrest with further increase between 12 and 24 hours. Median PCT values (range) at 24 hours after cardiac arrest were 22.7 ng/mL (0.2 – 41.0) in survivors vs. 205.5 ng/mL (116.6 – 600.0) in non survivors (p < 0.05). CRP levels were elevated in all patients, survivors and non-survivors, at 12 and 24 hours without differences between both groups.</p> <p>Conclusion</p> <p>Measurement of PCT during the first 24 hours after paediatric cardiac arrest could serve as marker of mortality.</p
New limits on nucleon decays into invisible channels with the BOREXINO Counting Test Facility
The results of background measurements with the second version of the
BOREXINO Counting Test Facility (CTF-II), installed in the Gran Sasso
Underground Laboratory, were used to obtain limits on the instability of
nucleons, bounded in nuclei, for decays into invisible channels ():
disappearance, decays to neutrinos, etc. The approach consisted of a search for
decays of unstable nuclides resulting from and decays of parents
C, C and O nuclei in the liquid scintillator and the water
shield of the CTF. Due to the extremely low background and the large mass (4.2
ton) of the CTF detector, the most stringent (or competitive) up-to-date
experimental bounds have been established: y, y, y and y, all at 90% C.L.Comment: 22 pages, 3 figures,submitted to Phys.Lett.
Oral fosfomycin for treatment of urinary tract infection: a retrospective cohort study
BACKGROUND: Fosfomycin is increasingly called upon for the treatment of multi drug-resistant (MDR) organisms causing urinary tract infection (UTI). We reviewed oral fosfomycin use for UTI treatment in a large UK hospital. The primary goal was to audit our clinical practice against current national guidelines. Secondary aims were to identify factors associated with treatment failure, and to investigate the potential for using fosfomycin in patients with co-morbidities. METHODS: We retrospectively studied 75 adult patients with UTI who received 151 episodes of treatment with fosfomycin from March 2013 to June 2015. We collected clinical data from our electronic patient record, and microbiology data pre- and post- fosfomycin treatment. We recorded additional data for patients receiving prolonged courses in order to make a preliminary assessment of safety and efficacy. We also reviewed >18,000 urinary tract isolates of Escherichia coli and Klebsiella spp. processed by our laboratory over the final year of our study period to determine the prevalence of fosfomycin resistance. RESULTS: There was a significant increase in fosfomycin treatment episodes over the course of the study period. Co-morbidities were present in 71 % of patients. The majority had E. coli infection (69 %), of which 59 % were extended spectrum beta-lactamase (ESBL)-producers. Klebsiella infections were more likely than E. coli to fail treatment, and more likely to be reported as fosfomycin resistant in cases of relapse following treatment. There were no adverse events in five patients treated with prolonged fosfomycin. Among all urinary isolates collected over a year, fosfomycin resistance was documented in 1 % of E. coli vs. 19 % of Klebsiella spp. (p < 0.0001). CONCLUSIONS: We report an important role for oral fosfomycin for MDR UTI treatment in a UK hospital population, and based on the findings from this study, we present our own local guidelines for its use. We present preliminary data suggesting that fosfomycin is safe and effective for use in patients with complex comorbidities and over prolonged time periods, but may be less effective against Klebsiella than E. coli
The Influences of H2Plasma Pretreatment on the Growth of Vertically Aligned Carbon Nanotubes by Microwave Plasma Chemical Vapor Deposition
The effects of H2flow rate during plasma pretreatment on synthesizing the multiwalled carbon nanotubes (MWCNTs) by using the microwave plasma chemical vapor deposition are investigated in this study. A H2and CH4gas mixture with a 9:1 ratio was used as a precursor for the synthesis of MWCNT on Ni-coated TaN/Si(100) substrates. The structure and composition of Ni catalyst nanoparticles were investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The present findings showed that denser Ni catalyst nanoparticles and more vertically aligned MWCNTs could be effectively achieved at higher flow rates. From Raman results, we found that the intensity ratio of G and D bands (ID/IG) decreases with an increasing flow rate. In addition, TEM results suggest that H2plasma pretreatment can effectively reduce the amorphous carbon and carbonaceous particles. As a result, the pretreatment plays a crucial role in modifying the obtained MWCNTs structures
- …