10 research outputs found

    First detection of a disk free of volatile elements around a young A-type star: A possible sign of collisions between rocky planets

    Get PDF
    Aims. We present the first detailed analysis of the astrophysical parameters of the poorly studied Sco-Cen member HD 152384 and its circumstellar environment. Methods. We analyse newly obtained optical-near-IR X-shooter spectra, as well as archival TESS data, of HD 152384. In addition, we use literature photometric data to construct a detailed spectral energy distribution (SED) of the star. Results. The photospheric absorption lines in the spectrum of HD 152384 are characteristic of an A0 V star, for which we derive a stellar mass of 2.1 ± 0.1 M⊙ and a stellar age > 4.5 Myr. Superimposed on the photospheric absorption, the optical spectrum also displays double-peaked emission lines of Ca II, Fe I, Mg I, and Si I, typical of circumstellar disks. Notably, all hydrogen and helium lines appear strictly in absorption. A toy model shows that the observed emission line profiles can be reproduced by emission from a compact (radius < 0.3 au) disk seen at an inclination of ∼24°. Further evidence for the presence of circumstellar material comes from the detection of a moderate IR excess in the SED, similar to those found in extreme debris disk systems. Conclusions. We conclude that HD 152384 is surrounded by a tenuous circumstellar disk that, although rich in refractory elements, is highly depleted of volatile elements. To the best of our knowledge, such a disk is unique among young stars. However, it is reminiscent of the disks seen in some white dwarfs, which have been attributed to the disruption of rocky planets. We suggest that the disk around HD 152384 may have a similar origin and may be due to collisions in a newly formed planetary system

    Identification of carbon dioxide in an exoplanet atmosphere

    Get PDF
    Carbon dioxide (CO2) is a key chemical species that is found in a wide range of planetary atmospheres. In the context of exoplanets, CO2 is an indicator of the metal enrichment (that is, elements heavier than helium, also called ‘metallicity’)1–3, and thus the formation processes of the primary atmospheres of hot gas giants4–6. It is also one of the most promising species to detect in the secondary atmospheres of terrestrial exoplanets7–9. Previous photometric measurements of transiting planets with the Spitzer Space Telescope have given hints of the presence of CO2, but have not yielded definitive detections owing to the lack of unambiguous spectroscopic identification10–12. Here we present the detection of CO2 in the atmosphere of the gas giant exoplanet WASP-39b from transmission spectroscopy observations obtained with JWST as part of the Early Release Science programme13,14. The data used in this study span 3.0–5.5 micrometres in wavelength and show a prominent CO2 absorption feature at 4.3 micrometres (26-sigma significance). The overall spectrum is well matched by one-dimensional, ten-times solar metallicity models that assume radiative–convective–thermochemical equilibrium and have moderate cloud opacity. These models predict that the atmosphere should have water, carbon monoxide and hydrogen sulfide in addition to CO2, but little methane. Furthermore, we also tentatively detect a small absorption feature near 4.0 micrometres that is not reproduced by these models

    Identification of carbon dioxide in an exoplanet atmosphere

    Get PDF
    Carbon dioxide (CO2) is a key chemical species that is found in a wide range of planetary atmospheres. In the context of exoplanets, CO2 is an indicator of the metal enrichment (that is, elements heavier than helium, also called ‘metallicity’), and thus the formation processes of the primary atmospheres of hot gas giants. It is also one of the most promising species to detect in the secondary atmospheres of terrestrial exoplanets. Previous photometric measurements of transiting planets with the Spitzer Space Telescope have given hints of the presence of CO2, but have not yielded definitive detections owing to the lack of unambiguous spectroscopic identification. Here we present the detection of CO2 in the atmosphere of the gas giant exoplanet WASP-39b from transmission spectroscopy observations obtained with JWST as part of the Early Release Science programme. The data used in this study span 3.0–5.5 micrometres in wavelength and show a prominent CO2 absorption feature at 4.3 micrometres (26-sigma significance). The overall spectrum is well matched by one-dimensional, ten-times solar metallicity models that assume radiative–convective–thermochemical equilibrium and have moderate cloud opacity. These models predict that the atmosphere should have water, carbon monoxide and hydrogen sulfide in addition to CO2, but little methane. Furthermore, we also tentatively detect a small absorption feature near 4.0 micrometres that is not reproduced by these models

    Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b

    No full text
    This is the author accepted manuscript.Data Availability: The data used in this paper are associated with JWST DD-ERS program 1366 (PIs Batalha, Bean, and Stevenson; observation 11) and are publicly available from the Mikulski Archive for Space Telescopes (https://mast.stsci.edu). Additional intermediate and final results from this work are archived on Zenodo at https://zenodo.org/doi/10.5281/zenodo.10525170Hot Jupiters are among the best-studied exoplanets, but it is still poorly understood how their chemical composition and cloud properties vary with longitude. Theoretical models predict that clouds may condense on the nightside and that molecular abundances can be driven out of equilibrium by zonal winds. Here we report a phase-resolved emission spectrum of the hot Jupiter WASP-43b measured from 5–12 µm with JWST’s Mid-Infrared Instrument (MIRI). The spectra reveal a large day–night temperature contrast (with average brightness temperatures of 1524 ± 35 and 863 ± 23 Kelvin, respectively) and evidence for water absorption at all orbital phases. Comparisons with three-dimensional atmospheric models show that both the phase curve shape and emission spectra strongly suggest the presence of nightside clouds which become optically thick to thermal emission at pressures greater than ∼100 mbar. The dayside is consistent with a cloudless atmosphere above the mid-infrared photosphere. Contrary to expectations from equilibrium chemistry but consistent with disequilibrium kinetics models, methane is not detected on the nightside (2σ upper limit of 1–6 parts per million, depending on model assumptions).NASAEuropean Research Council (ERC)NSFNHFP Sagan Fellowship ProgramAustrian Science Fund (FWF)Science and Technology Facilities Council (STFC)KU LeuvenEuropean Union Horizon 2020FWOANRCentre National d’Etudes Spatiales (CNES

    A benchmark JWST near-infrared spectrum for the exoplanet WASP-39 b

    No full text
    Observing exoplanets through transmission spectroscopy supplies detailed information about their atmospheric composition, physics and chemistry. Before the James Webb Space Telescope (JWST), these observations were limited to a narrow wavelength range across the near-ultraviolet to near-infrared, alongside broadband photometry at longer wavelengths. To understand more complex properties of exoplanet atmospheres, improved wavelength coverage and resolution are necessary to robustly quantify the influence of a broader range of absorbing molecular species. Here we present a combined analysis of JWST transmission spectroscopy across four different instrumental modes spanning 0.5–5.2 μm using Early Release Science observations of the Saturn-mass exoplanet WASP-39 b. Our uniform analysis constrains the orbital and stellar parameters within subpercentage precision, including matching the precision obtained by the most precise asteroseismology measurements of stellar density to date, and it further confirms the presence of Na, K, H2O, CO, CO2 and SO2 as atmospheric absorbers. Through this process, we have improved the agreement between the transmission spectra of all modes, except for the NIRSpec PRISM, which is affected by partial saturation of the detector. This work provides strong evidence that uniform light curve analysis is an important aspect to ensuring reliability when comparing the high-precision transmission spectra provided by JWST.</p

    Early Release Science of the exoplanet WASP-39b with JWST NIRCam

    No full text
    Measuring the metallicity and carbon-to-oxygen (C/O) ratio in exoplanet atmospheres is a fundamental step towards constraining the dominant chemical processes at work and, if in equilibrium, revealing planet formation histories. Transmission spectroscopy (for example, refs. 1,2) provides the necessary means by constraining the abundances of oxygen- and carbon-bearing species; however, this requires broad wavelength coverage, moderate spectral resolution and high precision, which, together, are not achievable with previous observatories. Now that JWST has commenced science operations, we are able to observe exoplanets at previously uncharted wavelengths and spectral resolutions. Here we report time-series observations of the transiting exoplanet WASP-39b using JWST’s Near InfraRed Camera (NIRCam). The long-wavelength spectroscopic and short-wavelength photometric light curves span 2.0–4.0 micrometres, exhibit minimal systematics and reveal well defined molecular absorption features in the planet’s spectrum. Specifically, we detect gaseous water in the atmosphere and place an upper limit on the abundance of methane. The otherwise prominent carbon dioxide feature at 2.8 micrometres is largely masked by water. The best-fit chemical equilibrium models favour an atmospheric metallicity of 1–100-times solar (that is, an enrichment of elements heavier than helium relative to the Sun) and a substellar C/O ratio. The inferred high metallicity and low C/O ratio may indicate significant accretion of solid materials during planet formation (for example, refs. 3,4,) or disequilibrium processes in the upper atmosphere (for example, refs. 5,6)
    corecore