21 research outputs found

    Modulation of ionic conduction using polarizable surfaces

    Full text link
    Hybrid ionic-electronic conductors have the potential to generate memory effects and neuronal behavior. The functionality of these mixed materials depends on ion motion through thin polarizable channels. Here, we explore different polarization models to show that the current and conductivity of electrolytes is higher when confined by conductors than by dielectrics. We show that the polarization charge location impacts electrolyte structure and transport properties. This work suggests a mechanism to induce memristor hysteresis loops using conductor-dielectric switchable materials.Comment: 5 pages, 4 figures, A. P. dos Santos and F. Jim\'enez-\'Angeles contributed equally to this work and both are equal first author

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    A Modeling-Based Design to Engineering Protein Hydrogels with Random Copolymers

    Get PDF
    Protein enzymes have shown great potential in numerous technological applications. However, the design of supporting materials is needed to preserve protein functionality outside their native environment. Direct enzyme-polymer self-assembly offers a promising alternative to immobilize proteins in an aqueous solution, achieving higher control of their stability and enzymatic activity in industrial applications. Herein, we propose a modeling-based design to engineering hydrogels of cytochrome P450 and of PETase with styrene/2-vinylpyridine (2VP) random copolymers. By tuning the copolymer fraction of polar groups and of charged groups via quaternization of 2VP for coassembly with cytochrome P450 and via sulfonation of styrene for coassembly with PETase, we provide quantitative guidelines to select either a protein-polymer hydrogel structure or a single-protein encapsulation. The results highlight that, regardless of the protein surface domains, the presence of polar interactions and hydration effects promote the formation of a more elongated enzyme-polymer complex, suggesting a membrane-like coassembly. On the other hand, the effectiveness of a single-protein encapsulation is reached by decreasing the fraction of polar groups and by increasing the charge fraction up to 15%. Our computational analysis demonstrates that the enzyme-polymer assemblies are first promoted by the hydrophobic interactions which lead the protein nonpolar residues to achieve the maximum coverage and to play the role of the most robust contact points. The mechanisms of coassembly are unveiled in the light of both protein and polymer physical-chemistry, providing bioconjugate phase diagrams for the optimal material design

    Surgical site infection after gastrointestinal surgery in children : an international, multicentre, prospective cohort study

    Get PDF
    Introduction Surgical site infection (SSI) is one of the most common healthcare-associated infections (HAIs). However, there is a lack of data available about SSI in children worldwide, especially from low-income and middle-income countries. This study aimed to estimate the incidence of SSI in children and associations between SSI and morbidity across human development settings. Methods A multicentre, international, prospective, validated cohort study of children aged under 16 years undergoing clean-contaminated, contaminated or dirty gastrointestinal surgery. Any hospital in the world providing paediatric surgery was eligible to contribute data between January and July 2016. The primary outcome was the incidence of SSI by 30 days. Relationships between explanatory variables and SSI were examined using multilevel logistic regression. Countries were stratified into high development, middle development and low development groups using the United Nations Human Development Index (HDI). Results Of 1159 children across 181 hospitals in 51 countries, 523 (45 center dot 1%) children were from high HDI, 397 (34 center dot 2%) from middle HDI and 239 (20 center dot 6%) from low HDI countries. The 30-day SSI rate was 6.3% (33/523) in high HDI, 12 center dot 8% (51/397) in middle HDI and 24 center dot 7% (59/239) in low HDI countries. SSI was associated with higher incidence of 30-day mortality, intervention, organ-space infection and other HAIs, with the highest rates seen in low HDI countries. Median length of stay in patients who had an SSI was longer (7.0 days), compared with 3.0 days in patients who did not have an SSI. Use of laparoscopy was associated with significantly lower SSI rates, even after accounting for HDI. Conclusion The odds of SSI in children is nearly four times greater in low HDI compared with high HDI countries. Policies to reduce SSI should be prioritised as part of the wider global agenda.Peer reviewe
    corecore