7 research outputs found

    Chicken lines divergently selected on feather pecking differ in immune characteristics

    No full text
    It is crucial to identify whether relations between immune characteristics and damaging behaviors in production animals exist, as these behaviors reduce animal welfare and productivity. Feather pecking (FP) is a damaging behavior in chickens, which involves hens pecking and pulling at feathers of conspecifics. To further identify relationships between the immune system and FP we characterized high FP (HFP) and low FP (LFP) selection lines with regard to nitric oxide (NO) production by monocytes, specific antibody (SpAb) titers, natural (auto)antibody (N(A)Ab) titers and immune cell subsets. NO production by monocytes was measured as indicator for innate pro-inflammatory immune functioning, SpAb titers were measured as part of the adaptive immune system and N(A)Ab titers were measured as they play an essential role in both innate and adaptive immunity. Immune cell subsets were measured to identify whether differences in immune characteristics were reflected by differences in the relative abundance of immune cell subsets. Divergent selection on FP affected NO production by monocytes, SpAb and N(A)Ab titers, but did not affect immune cell subsets. The HFP line showed higher NO production by monocytes and higher IgG N(A)Ab titers compared to the LFP line. Furthermore the HFP line tended to have lower IgM NAAb titers, but higher IgM and IgG SpAb titers compared to the LFP line. Thus, divergent selection on FP affects the innate and adaptive immune system, where the HFP line seems to have a more responsive immune system compared to the LFP line. Although causation cannot be established in the present study, it is clear that relationships between the immune system and FP exist. Therefore, it is important to take these relationships into account when selecting on behavioral or immunological traits

    Innate immune training and metabolic reprogramming in primary monocytes of broiler and laying hens

    No full text
    Recently, we have reported trained innate immunity in laying chicken monocytes. In the present study, we further investigated trained innate immunity of monocytes in layers and broilers. Monocytes of both breeds isolated from blood were trained in vitro with β-glucan, rec-chicken IL-4 or a combination of both, and restimulated with lipopolysaccharide (LPS), after which inflammation and metabolism-related responses were measured. Training of laying and broiler hen monocytes resulted in increased mRNA levels of IL-1β, iNOS and HIF-1α, but enhanced surface expression of CD40 and NO production was only observed in layers. Our in vitro study demonstrates that monocytes from different genetic backgrounds can be trained. However, the observed differences suggest a differential effect on immune functionality associated with innate training. Whether these differences in immune functions between layers and broilers have effect on disease resistance remains to be elucidated.</p
    corecore