48 research outputs found

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    CuOX thin films by direct oxidation of Cu films deposited by physical vapor deposition

    No full text
    Thin films of Cu2O and CuO oxides were developed by direct oxidation of physical vapor deposited copper films in an open atmosphere by varying the temperature in the range between 250 and 400 °C. In this work, the influence of oxidation temperature on structural, optical and electrical properties of copper oxide films has been discussed. The characterization results revealed that at lower temperatures (<300 °C), it is feasible to obtained coper (I) oxide whereas at temperatures higher than 300 °C, the copper (II) oxide is formed. The band gap is found to vary in between 1.54 and 2.21 eV depending on the oxidation temperature. Both oxides present p-type electrical conductivity. The carrier concentration has been increased as a function of the oxidation temperature from 1.61 × 1012 at 250 °C to 6.8 × 1012 cm−3 at 400 °C. The mobility has attained its maximum of 34.5 cm2 V−1 s−1 at a temperature of 300 °C, and a minimum of 13.8 cm2 V−1 s−1 for 400 °C. Finally, the resistivity of copper oxide films decreases as a function of oxidation temperature from 5.4 × 106 to 2.4 × 105 Ω-cm at 250 and 400 °C, respectively. Keywords: PVD, Oxidizing annealed treatment, Non-toxic materia

    Structural, optical and electrical properties of Cd-doped SnO 2 thin films grown by RF reactive magnetron co-sputtering

    No full text
    Transparent conducting SnO 2:Cd thin films were prepared by RF reactive magnetron co-sputtering on glass slides at a substrate temperature of 500 °C using CdO as cadmium source. The films were deposited under a mixed argon/oxygen atmosphere. The structural, optical and electrical properties were analyzed as a function of the Cd amount in the target. The X-ray diffraction shows that polycrystalline films were grown with both the tetragonal and orthorhombic phases of SnO 2. The obtained films have high transmittance and conductivity. The figure of merit of SnO 2:Cd films are in the order of 10 -3 Ω -1, which suggests that these films can be considered as candidates for transparent electrodes. © 2011 Elsevier B.V. All rights reserved

    Stemming the tide? Assessing the deterrent effects of the immigration reform and control act

    No full text
    Transparent conducting SnO 2:Cd thin films were prepared by RF reactive magnetron co-sputtering on glass slides at a substrate temperature of 500 °C using CdO as cadmium source. The films were deposited under a mixed argon/oxygen atmosphere. The structural, optical and electrical properties were analyzed as a function of the Cd amount in the target. The X-ray diffraction shows that polycrystalline films were grown with both the tetragonal and orthorhombic phases of SnO 2. The obtained films have high transmittance and conductivity. The figure of merit of SnO 2:Cd films are in the order of 10 -3 ? -1, which suggests that these films can be considered as candidates for transparent electrodes. " 2011 Elsevier B.V. All rights reserved.",,,,,,"10.1016/j.apsusc.2011.10.072",,,"http://hdl.handle.net/20.500.12104/44797","http://www.scopus.com/inward/record.url?eid=2-s2.0-84855523682&partnerID=40&md5=2776217c42f70b8ef71efeeda2a8975a",,,,,,"7",,"Applied Surface Science",,"245

    Synthesis of silicon nanoparticles by laser ablation at low fluences in water and ethanol

    No full text
    Colloidal silicon nanoparticles (Si-nc) where synthesized by laser ablation of a solid Si target in water and ethanol. The target was immersed in a vessel containing the solvent and irradiated during 5 and 10 min at different fluences: 0.530, 0.608, 0.687 J cm ^−2 . Ablation was carried out using a laser wavelength of 1064 nm. The obtained colloidal nanoparticles were irradiated after the synthesis to evaluate if laser fragmentation could be produced. In addition, a series of nanoparticles using ethanol as liquid medium was synthesized ablating with 532 nm. Colloidal nanoparticles were structurally characterized by Raman spectroscopy and Transmission Electron Microscopy. Size of the Si-nc were calculated by the theorical models: Bond Polarizability Model (BPM) and One-Phonon Confinement Model (PCM), where nanocrystals ranging from 2 to 11 nm were found

    Structural and morphological characterization of YBa2Cu3O7-x films deposited by screen printing from YBa2Cu3O6.962 superconductor in bulk

    No full text
    YBa _2 Cu _3 O _7-x films were deposited onto flexible copper substrates by screen printing technique. YBa _2 Cu _3 O _7-x films were prepared from a YBa _2 Cu _3 O _7-x superconductor powder with ethylene glycol. The mixtures were screen printed and then sintered in air at different temperatures: 373, 473, and 573 K. The structural characterization showed the presence of different phases; the proportion of phases in films depends on sintering temperature. Scanning electron microscope images showed that an annealing temperature increase leads to an increase in grain size due to a coalescence process, which promotes the growth of superconductor phases with higher oxygen content

    Effect of the sulfur and fluorine concentration on physical properties of CdS films grown by chemical bath deposition

    No full text
    Undoped and F-doped CdS thin films were grown on glass slides by chemical bath deposition using thiourea, cadmium acetate and ammonium fluoride as sulfur, cadmium, and fluorine sources, respectively. Undoped CdS films were deposited varying the concentration of thiourea. Once the optimal thiourea concentration was determined, based on the crystalline quality of the samples, this concentration was maintained and ammonium fluoride was added at different concentrations in order to explore the effect of the F nominal concentration on properties of CdS films. Undoped and F-doped CdS films were characterized by X-ray diffraction, UV–Vis, room temperature photoluminescence, and four probe resistivity measurements. Results showed highly transparent F-doped CdS films with strong PL and low resistivity were obtained. Keywords: CdS films, F-doped CdS films, Chemical bath deposition, Optical properties, Room temperature photoluminescenc

    Physical properties of CdTe:Cu films grown at low temperature by pulsed laser deposition

    No full text
    CdTe:Cu films were grown by pulsed laser deposition on Corning glass slides at a substrate temperature of 300�C. The thin films were grown using CdTe and Cu2Te powders, varying the Cu2Te concentration from 3 to 10wt. %. The structural, compositional, optical, and electrical properties were analyzed as a function of the nominal copper concentration. X-ray diffraction shows that films have CdTe cubic phase. The compositional analysis indicates that CdTe:Cu films grown with lower Cu content have Te excess, on the other hand, films with higher Cu content have Te deficiencies. The electrical measurements showed that CdTe:Cu films grown with low Cu content present lowest resistivity. � 2012 American Institute of Physics
    corecore