537 research outputs found

    Selection for Silage Yield and Composition Did Not Affect Genomic Diversity Within the Wisconsin Quality Synthetic Maize Population

    Get PDF
    Maize silage is forage of high quality and yield, and represents the second most important use of maize in the United States. The Wisconsin Quality Synthetic (WQS) maize population has undergone five cycles of recurrent selection for silage yield and composition, resulting in a genetically improved population. The application of high-density molecular markers allows breeders and geneticists to identify important loci through association analysis and selection mapping, as well as to monitor changes in the distribution of genetic diversity across the genome. The objectives of this study were to identify loci controlling variation for maize silage traits through association analysis and the assessment of selection signatures and to describe changes in the genomic distribution of gene diversity through selection and genetic drift in theWQS recurrent selection program. We failed to find any significant marker-trait associations using the historical phenotypic data from WQS breeding trials combined with 17,719 high-quality, informative single nucleotide polymorphisms. Likewise, no strong genomic signatures were left by selection on silage yield and quality in the WQS despite genetic gain for these traits. These results could be due to the genetic complexity underlying these traits, or the role of selection on standing genetic variation. Variation in loss of diversity through drift was observed across the genome. Some large regions experienced much greater loss in diversity than what is expected, suggesting limited recombination combined with small populations in recurrent selection programs could easily lead to fixation of large swaths of the genome

    Association of Covered California and Healthcare Access and Utilization among Latino Population

    Get PDF
    Background and Purpose: The Patient Protection and Affordable Care Act resulted in establishment of Covered California (Covered CA), a marketplace providing federally subsidized health insurance in California. This study explored whether obtaining Covered CA coverage improves healthcare access and utilization among Latinos, and whether acculturation plays a role in utilization of healthcare. Methods: 270 Latino adults in San Diego community completed a self-report survey. Results: Those with Covered CA were significantly more likely to have a main provider (p<.0005), to select doctor’s office as location for services (p<.05), and significantly less likely (p<.0005) to report cost as an obstacle to care compared to uninsured participants. The more acculturated group was more likely to report receiving care at a doctor’s office (p<.05). Those who were less acculturated were more likely to report cost as an obstacle to care (p<.05). However, no significant associations were found between acculturation or insurance type and utilization of healthcare. Conclusion: Although health insurance and higher levels of acculturation do improve access, the study did not find their significant association with utilization of provider visits. Our results suggest that healthcare providers might want to consider additional factors to improve utilization of services instead of mainly emphasizing insurance

    Forage quality and composition measurements as predictors of ethanol yield from maize (Zea mays L.) stover

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Improvement of biofeedstock quality for cellulosic ethanol production will be facilitated by inexpensive and rapid methods of evaluation, such as those already employed in the field of ruminant nutrition. Our objective was to evaluate whether forage quality and compositional measurements could be used to estimate ethanol yield of maize stover as measured by a simplified pretreatment and simultaneous saccharification and fermentation assay. Twelve maize varieties selected to be diverse for stover digestibility and composition were evaluated.</p> <p>Results</p> <p>Variation in ethanol yield was driven by glucan convertibility rather than by glucan content. Convertibility was highly correlated with ruminal digestibility and lignin content. There was no relationship between structural carbohydrate content (glucan and neutral detergent fiber) and ethanol yield. However, when these variables were included in multiple regression equations including convertibility or neutral detergent fiber digestibility, their partial regression coefficients were significant and positive. A regression model including both neutral detergent fiber and its ruminal digestibility explained 95% of the variation in ethanol yield.</p> <p>Conclusion</p> <p>Forage quality and composition measurements may be used to predict cellulosic ethanol yield to guide biofeedstock improvement through agronomic research and plant breeding.</p

    Harnessing Phenotypic Plasticity to Improve Maize Yields

    Get PDF
    Plants can produce different phenotypes when exposed to different environments. Understanding the genetic basis of these plastic responses is crucial for crop breeding efforts. We discuss two recent studies that suggest that yield plasticity in maize has been under selection but is controlled by different genes than yield

    Vomocytosis: Too Much Booze, Base, or Calcium?

    Get PDF
    Macrophages are well known for their phagocytic activity and their role in innate immune responses. Macrophages eat non-self particles, via a variety of mechanisms, and typically break down internalized cargo into small macromolecules. However, some pathogenic agents have the ability to evade this endosomal degradation through a nonlytic exocytosis process termed vomocytosis. This phenomenon has been most often studied for Cryptococcus neoformans, a yeast that causes roughly 180,000 deaths per year, primarily in immunocompromised (e.g., human immunodeficiency virus [HIV]) patients. Existing dogma purports that vomocytosis involves distinctive cellular pathways and intracellular physicochemical cues in the host cell during phagosomal maturation. Moreover, it has been observed that the immunological state of the individual and macrophage phenotype affect vomocytosis outcomes. Here we compile the current knowledge on the factors (with respect to the phagocytic cell) that promote vomocytosis of C. neoformans from macrophages

    Exile Vol. LVIII

    Get PDF
    Autumn Stiles: Biblical Brooklyn 5 Daniel Carlson: A Night Indoors 6 Moriah Ellenborgen: Cradle Drop 8 Nicco Pandolfi: Cardinality 10 Abby Current: Babies in the Snow 11 Maggie Reagan: Chimaera 13 Natalie Olivo: Treading Water 14 Julianne Hyer: Swatch Watch 21 Mimi Mendes de Leon: For Bosnia 23 A. Tangredi: How to Keep from Freezing 24 Autumn Stiles: Bodies and Bread 25 Christie Maillet: The Depth of a Song 26 Sam Heyman: First Kiss 27 Shawn Whites: Five Hundred Miles to Freedom 28 Ammon Hollister: Temptation 31 Caroline Clutterbuck: The Conspiracy in Your Smile 32 Nicco Pandolfi: Sore Subject 33 Meghan Callahan: Why Claire Left 34 Aaron Bennett: Ode to Arden 36 Daniel Carlson: Duty 37 Lindsey Clark: Snapshot 38 Steph Maniaci: Ode to an M&M 39 Abby Current: The Animal Bride 41 Julianne Hyer: Trees Pantoum 42 Ammon Hollister: Life Support 43 Maggie Reagan: Necropolis 44

    Methodology to optimize fluid-dynamic design in a redox cell

    Full text link
    [EN] The present work is aimed at the optimization of a redox cell design. The studied redox cell consists on a device designed to convert the energy of reactants into electrical energy when a liquid electrolyte reacts at the electrode in a conventional manner. In this particular sort of cells, the two electrolytes are present and separated by a proton exchange membrane. Therefore, the flow of the electrolyte and the interaction with the membrane takes a paramount importance for the general performance of the cell. A methodology for designing the inlet part of the cell based on optimizing the uniformity of the flow and the initial position of the membrane is presented in this study. This methodology, based on the definition and optimization of several parameters related to the electrolyte flow in different regions of the geometry, is depicted. The CFD (Computational Fluid Dynamics) model coupled with the statistical study pointed to several practical conclusions on how to improve the final geometry construction of the redox cell. A particular case study of redox cell is implemented in order to validate the proposed methodology[ES] El presente trabajo tiene como objetivo la optimización de un diseño de la batería redox. La pila redox estudiada consiste en un dispositivo diseñado para convertir la energía de los reactivos en energía eléctrica cuando un electrolito líquido reacciona en el electrodo de una manera convencional . En este tipo particular de células , los dos electrolitos están presentes y separados por una membrana de intercambio de protones . Por lo tanto , el flujo del electrolito y la interacción con la membrana tiene una importancia primordial para el rendimiento general de la célula . La metodología propuesta para el diseño de la parte de entrada de la celda en base a la optimización de la uniformidad del flujo y la inicial posición de la membrana se presenta en este estudio . Esta metodología, basada en la definición y optimización de varios parámetros relacionados con el flujo de electrolito en las diferentes regiones de la geometría , es representado . El modelo de CFD (Computational Fluid Dynamics ), junto con el estudio estadístico se refirió a varias conclusiones prácticas sobre la manera de mejorar la construcción geometría final de la pila redox . El estudio de caso particular de célula redox que se describe, se implementa con el fin de validar la metodología propuestaEscudero González, J.; López Jiménez, PA. (2014). Methodology to optimize fluid-dynamic design in a redox cell. Journal of Power Sources. 251(1):243-253. doi:10.1016/j.jpowsour.2013.11.058S243253251

    Network anatomy in logopenic variant of primary progressive aphasia

    Get PDF
    The logopenic variant of primary progressive aphasia (lvPPA) is a neurodegenerative syndrome characterized linguistically by gradual loss of repetition and naming skills resulting from left posterior temporal and inferior parietal atrophy. Here, we sought to identify which specific cortical loci are initially targeted by the disease (epicenters) and investigate whether atrophy spreads through predetermined networks. First, we used cross-sectional structural MRI data from individuals with lvPPA to define putative disease epicenters using a surface-based approach paired with an anatomically fine-grained parcellation of the cortical surface (i.e., HCP-MMP1.0 atlas). Second, we combined cross-sectional functional MRI data from healthy controls and longitudinal structural MRI data from individuals with lvPPA to derive the epicenter-seeded resting-state networks most relevant to lvPPA symptomatology and ascertain whether functional connectivity in these networks predicts longitudinal atrophy spread in lvPPA. Our results show that two partially distinct brain networks anchored to the left anterior angular and posterior superior temporal gyri epicenters were preferentially associated with sentence repetition and naming skills in lvPPA. Critically, the strength of connectivity within these two networks in the neurologically-intact brain significantly predicted longitudinal atrophy progression in lvPPA. Taken together, our findings indicate that atrophy progression in lvPPA, starting from inferior parietal and temporoparietal junction regions, predominantly follows at least two partially nonoverlapping pathways, which may influence the heterogeneity in clinical presentation and prognosis
    • …
    corecore