230 research outputs found

    Restoring observed classical behavior of the carbon nanotube field emission enhancement factor from the electronic structure

    Get PDF
    Experimental Fowler-Nordheim plots taken from orthodoxly behaving carbon nanotube (CNT) field electron emitters are known to be linear. This shows that, for such emitters, there exists a characteristic field enhancement factor (FEF) that is constant for a range of applied voltages and applied macroscopic fields FMF_\text{M}. A constant FEF of this kind can be evaluated for classical CNT emitter models by finite-element and other methods, but (apparently contrary to experiment) several past quantum-mechanical (QM) CNT calculations find FEF-values that vary with FMF_\text{M}. A common feature of most such calculations is that they focus only on deriving the CNT real-charge distributions. Here we report on calculations that use density functional theory (DFT) to derive real-charge distributions, and then use these to generate the related induced-charge distributions and related fields and FEFs. We have analysed three carbon nanostructures involving CNT-like nanoprotrusions of various lengths, and have also simulated geometrically equivalent classical emitter models, using finite-element methods. We find that when the DFT-generated local induced FEFs (LIFEFs) are used, the resulting values are effectively independent of macroscopic field, and behave in the same qualitative manner as the classical FEF-values. Further, there is fair to good quantitative agreement between a characteristic FEF determined classically and the equivalent characteristic LIFEF generated via DFT approaches. Although many issues of detail remain to be explored, this appears to be a significant step forwards in linking classical and QM theories of CNT electrostatics. It also shows clearly that, for ideal CNTs, the known experimental constancy of the FEF value for a range of macroscopic fields can also be found in appropriately developed QM theory.Comment: A slightly revised version has been published - citation below - under a title different from that originally used. The new title is: "Restoring observed classical behavior of the carbon nanotube field emission enhancement factor from the electronic structure

    Modeling the Field Emission Enhancement Factor for Capped Carbon Nanotubes using the Induced Electron Density

    Full text link
    In many field electron emission experiments on single-walled carbon nanotubes (SWCNTs), the SWCNT stands on one of two well-separated parallel plane plates, with a macroscopic field FM applied between them. For any given location "L" on the SWCNT surface, a field enhancement factor (FEF) is defined as FLF_{\rm{L}}/FMF_{\rm{M}}, where FLF_{\rm{L}} is a local field defined at "L". The best emission measurements from small-radii capped SWCNTs exhibit characteristic FEFs that are constant (i.e., independent of FMF_{\rm{M}}). This paper discusses how to retrieve this result in quantum-mechanical (as opposed to classical electrostatic) calculations. Density functional theory (DFT) is used to analyze the properties of two short, floating SWCNTS, capped at both ends, namely a (6,6) and a (10,0) structure. Both have effectively the same height (5.46\sim 5.46 nm) and radius (0.42\sim 0.42 nm). It is found that apex values of local induced FEF are similar for the two SWCNTs, are independent of FMF_{\rm{M}}, and are similar to FEF-values found from classical conductor models. It is suggested that these induced-FEF values relate to the SWCNT longitudinal system polarizabilities, which are presumed similar. The DFT calculations also generate "real", as opposed to ``induced", potential-energy (PE) barriers for the two SWCNTs, for FM-values from 3 V/μ\mum to 2 V/nm. PE profiles along the SWCNT axis and along a parallel ``observation line" through one of the topmost atoms are similar. At low macroscopic fields the details of barrier shape differ for the two SWCNT types. Even for FM=0F_{\rm{M}}=0, there are distinct PE structures present at the emitter apex (different for the two SWCNTs); this suggests the presence of structure-specific chemically induced charge transfers and related patch-field distributions

    On the quantum mechanics of how an ideal carbon nanotube field emitter can exhibit a constant field enhancement factor

    Full text link
    Measurements of current-voltage characteristics from ideal carbon nanotube (CNT) field electron emitters of small apex radius have shown that these emitters can exhibit a linear Fowler-Nordheim (FN) plot [e.g., Dean and Chalamala, Appl. Phys. Lett., 76, 375, 2000]. From such a plot, a constant (voltage-independent) characteristic field enhancement factor (FEF) can be deduced. Over fifteen years later, this experimental result has not yet been convincingly retrieved from first-principles electronic structure calculations, or more generally from quantum mechanics (QM). On the contrary, several QM calculations have deduced that the characteristic FEF should be a function of the macroscopic field applied to the CNT. This apparent contradiction between experiment and QM theory has been an unexplained feature of CNT emission science, and has raised doubts about the ability of existing QM models to satisfactorily describe experimental CNT emission behavior. In this work we demonstrate, by means of a density functional theory analysis of single-walled CNTs "floating" in an applied macroscopic field, the following significant result. This is that agreement between experiment, classical-conductor CNT models and QM calculations can be achieved if the latter are used to calculate (from the "real" total-charge-density distributions initially obtained) the distributions of induced\textit{induced} charge-density, induced local fields and induced local FEFs. The present work confirms, more reliably and in significantly greater detail than in earlier work on a different system, that this finding applies to the common "post-on-a-conducing plane" situation of CNT field electron emission. This finding also brings out various further theoretical questions that need to be explored

    Uma capitania dos novos tempos: economia, sociedade e política na São Paulo restaurada (1765-1822)

    Get PDF
    O artigo reflete sobre a trajetória da Capitania de São Paulo, a partir de 1750, apontando sua transformação, de fronteira e "boca do sertão", para território estratégico da conquista e defesa das partes meridionais e área economicamente integrada aos circuitos mercantis atlânticos.In this article, we reflect upon the history of the Captaincy of São Paulo as from 1750, drawing attention to its transformation from frontier land and "door to the backcountry" into a territory of strategic value for the purposes of conquest and defense of the southern regions, and economically integrated into the Atlantic trade routes

    Scaling of mortality in 742 metropolitan areas of the Americas.

    Get PDF
    We explored how mortality scales with city population size using vital registration and population data from 742 cities in 10 Latin American countries and the United States. We found that more populated cities had lower mortality (sublinear scaling), driven by a sublinear pattern in U.S. cities, while Latin American cities had similar mortality across city sizes. Sexually transmitted infections and homicides showed higher rates in larger cities (superlinear scaling). Tuberculosis mortality behaved sublinearly in U.S. and Mexican cities and superlinearly in other Latin American cities. Other communicable, maternal, neonatal, and nutritional deaths, and deaths due to noncommunicable diseases were generally sublinear in the United States and linear or superlinear in Latin America. Our findings reveal distinct patterns across the Americas, suggesting no universal relation between city size and mortality, pointing to the importance of understanding the processes that explain heterogeneity in scaling behavior or mortality to further advance urban health policies

    Ibicaba revisitada outra vez: espaço, escravidão e trabalho livre no oeste paulista

    Get PDF
    Ibicaba Farm, property of Senator Nicolau Pereira de Campos Vergueiro during the 19th century, was the subject of studies that focused on the experience with the sharecropping system. This article intends to undertake a revisit to Ibicaba through new lenses of observation. At first, it tries to insert Vergueiro's farm in the context of the changing World-economy of the first decades of the nineteenth century, and then highlight the importance of the spatial dimension of reality in this historical context. In the following two subitems, which constitute the core of the article, an analysis is made of the protocols - especially spatial - of control of the workers, used by the Vergueiros in order to extract the maximum of labor from slaves and sharecroppers, as well as the strategies that captives and immigrants used to escape from this surveillance. Finally, a brief recapitulation of the main points exposed and some considerations about the tensions that emerged in Ibicaba during the studied period are made.A Fazenda Ibicaba, propriedade do Senador Nicolau Pereira de Campos Vergueiro ao longo do século XIX, foi objeto de estudos que enfocaram a experiência com o sistema de parceria que ela abrigou. Este artigo pretende revisitar Ibicaba por meio de novas lentes de observação. Em um primeiro momento, buscar-se-á inserir a fazenda de Vergueiro no contexto de mudança pela qual a Economia-mundo passava nas primeiras décadas do Oitocentos para, em seguida, salientar a importância que a dimensão espacial da realidade cumpria nesse contexto histórico. Nos dois subitens seguintes, que constituem o núcleo do artigo, analisam-se os protocolos - sobretudo espaciais - de controle da mão de obra utilizados pelos Vergueiro, com vistas à máxima extração de trabalho de escravos e colonos, bem como as estratégias de que cativos e imigrantes lançaram mão para escapar dessa vigilância. Faz-se, ao fim, uma breve recapitulação dos principais pontos expostos e algumas considerações sobre as tensões que emergiram em Ibicaba durante o período estudado

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    Penilaian Kinerja Keuangan Koperasi di Kabupaten Pelalawan

    Full text link
    This paper describe development and financial performance of cooperative in District Pelalawan among 2007 - 2008. Studies on primary and secondary cooperative in 12 sub-districts. Method in this stady use performance measuring of productivity, efficiency, growth, liquidity, and solvability of cooperative. Productivity of cooperative in Pelalawan was highly but efficiency still low. Profit and income were highly, even liquidity of cooperative very high, and solvability was good
    corecore