16,537 research outputs found

    First principles phase diagram calculations for the wurtzite-structure systems AlN–GaN, GaN–InN, and AlN–InN

    Get PDF
    First principles phase diagram calculations were performed for the wurtzite-structure quasibinary systems AlN–GaN, GaN–InN, and AlN–InN. Cluster expansion Hamiltonians that excluded, and included, excess vibrational contributions to the free energy, Fvib, were evaluated. Miscibility gaps are predicted for all three quasibinaries, with consolute points, (XC,TC), for AlN–GaN, GaN–InN, and AlN–InN equal to (0.50, 305 K), (0.50, 1850 K), and (0.50, 2830 K) without Fvib, and (0.40, 247 K), (0.50, 1620 K), and (0.50, 2600 K) with Fvib, respectively. In spite of the very different ionic radii of Al, Ga, and In, the GaN–InN and AlN–GaN diagrams are predicted to be approximately symmetric

    First-principles phase diagram calculations for the HfC–TiC, ZrC–TiC, and HfC–ZrC solid solutions

    Get PDF
    We report first-principles phase diagram calculations for the binary systems HfC–TiC, TiC–ZrC, and HfC–ZrC. Formation energies for superstructures of various bulk compositions were computed with a plane-wave pseudopotential method. They in turn were used as a basis for fitting cluster expansion Hamiltonians, both with and without approximations for excess vibrational free energies. Significant miscibility gaps are predicted for the systems TiC–ZrC and HfC–TiC, with consolute temperatures in excess of 2000 K. The HfC–ZrC system is predicted to be completely miscibile down to 185 K. Reductions in consolute temperature due to excess vibrational free energy are estimated to be ~7%, ~20%, and ~0%, for HfC–TiC, TiC–ZrC, and HfC–ZrC, respectively. Predicted miscibility gaps are symmetric for HfC–ZrC, almost symmetric for HfC–TiC and asymmetric for TiC–ZrC

    Technology and restructuring the social field of dairy farming : hybrid capitals, ‘stockmanship’ and automatic milking systems

    Get PDF
    This paper draws on research exploring robotic and information technologies in livestock agriculture. Using Automatic Milking Systems (AMS) as an example we use the work of Bourdieu to illustrate how technology can be seen as restructuring the practices of dairy farming, the nature of what it is to be a dairy farmer, and the wider field of dairy farming. Approaching technology in this way and by drawing particularly upon the ‘thinking tools’ (Grenfell, 2008) of Pierre Bourdieu, namely field, capital and habitus, the paper critically examines the relevance of Bourdieu’s thought to the study of technology. In the heterogeneous agricultural context of dairy farming, we expand on Bourdieu’s types of capital to define what we have called ‘hybrid’ capital involving human-cow-technology collectives. The concept of hybrid capital expresses how the use of a new technology can shift power relations within the dairy field, affecting human-animal relations and changing the habitus of the stock person. Hybrid capital is produced through a co-investment of stock keepers, cows and technologies, and can become economically and culturally valuable within a rapidly restructuring dairying field when invested in making dairy farming more efficient and changing farmers’ social status and work-life balance. The paper shows how AMS and this emergent hybrid capital is associated with new but contested definitions of what counts as ‘good’ dairy farming practice, and with the emergence of new modes of dairy farmer habitus, within a wider dairy farming field whose contours are being redrawn through the implementation of new robotic and information technologies

    Sixty Billion Gallons by 2030: Economic and Agricultural Impacts of Ethanol and Biodiesel Expansion

    Get PDF
    Agriculture is well positioned as a feedstock source because the fuels can be utilized with current engine technologies and are compatible with the current distribution infrastructure. Commercialization of cellulosic to ethanol technology will enable fuels to be derived from a diverse portfolio of feedstocks from numerous regions of the country. The levels of ethanol production analyzed are 10, 30, and 60 billion gallons of ethanol annually by 2010, 2020 and 2030, respectively. Impacts of producing 1 billion gallons of biodiesel production by 2012 and 1.6 billion gallons by 2030 are also projected. Overall, for the period 2007 to 2030, the estimated accumulated gains in net farm income are over 210billion;andtheaccumulatedpotentialsavingsingovernmentpaymentsareestimatedtobe210 billion; and the accumulated potential savings in government payments are estimated to be 150 billion. Due to the geographic decentralization of the production of feedstock, economic gains are projected to accrue to the majority of regions of the country. Significant expansion beyond 60 billion gallons per year would likely require expansion of the region suitable for the production of bioenergy crops, ability to convert other pastureland (beyond cropland in pasture) into energy crops; allowing CRP acreage to be used in feedstock production, increasing short-rotation wood crops in the Northeast and Northwest regions, increased yields above those assumed in the analysis, and/or increasing the efficiency of cellulosic conversion. Further research should examine the agricultural, environmental, and economic impacts of one or more these factors changing.Resource /Energy Economics and Policy,

    Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit

    Full text link
    A number of new functionalities have been added to the Alloy Theoretic Automated Toolkit (ATAT) since it was last reviewed in this journal in 2002. ATAT can now handle multicomponent multisublattice alloy systems, nonconfigurational sources of entropy (e.g. vibrational and electronic entropy), Special Quasirandom Structures (SQS) generation, tensorial cluster expansion construction and includes interfaces for multiple atomistic or ab initio codes. This paper presents an overview of these features geared towards the practical use of the code. The extensions to the cluster expansion formalism needed to cover multicomponent multisublattice alloys are also formally demonstrated.Comment: Code available from http://www.alum.mit.edu/www/avdw/ata

    Automated, unsupervised inversion of multiwavelength lidar data with TiARA : Assessment of retrieval performance of microphysical parameters using simulated data

    Get PDF
    We evaluate the retrieval performance of the automated, unsupervised inversion algorithm, Tikhonov Advanced Regularization Algorithm (TiARA), which is used for the autonomous retrieval of microphysical parameters of anthropogenic and natural pollution particles. TiARA (version 1.0) has been developed in the past 10 years and builds on the legacy of a data-operator-controlled inversion algorithm used since 1998 for the analysis of data from multiwavelength Raman lidar. The development of TiARA has been driven by the need to analyze in (near) real time large volumes of data collected with NASA Langley Research Center's high-spectral-resolution lidar (HSRL-2). HSRL-2 was envisioned as part of the NASA Aerosols-Clouds-Ecosystems mission in response to the National Academy of Sciences (NAS) Decadal Study mission recommendations 2007. TiARA could thus also serve as an inversion algorithm in the context of a future space-borne lidar. We summarize key properties of TiARA on the basis of simulations with monomodal logarithmic-normal particle size distributions that cover particle radii from approximately 0.05 ÎŒm to 10 ÎŒm. The real and imaginary parts of the complex refractive index cover the range from nonabsorbing to highly light-absorbing pollutants. Our simulations include up to 25% measurement uncertainty. The goal of our study is to provide guidance with respect to technical features of future space-borne lidars, if such lidars will be used for retrievals of microphysical data products, absorption coefficients, and single-scattering albedo. We investigate the impact of two different measurement-error models on the quality of the data products.We also obtain for the first time, to the best of our knowledge, a statistical view on systematic and statistical uncertainties, if a large volume of data is processed. Effective radius is retrieved to 50% accuracy for 58% of cases with an imaginary part up to 0.01i and up to 100% of cases with an imaginary part of 0.05i. Similarly, volume concentration, surface-area concentration, and number concentrations are retrieved to 50% accuracy in 56%-100% of cases, 99%-100% of cases, and 54%-87% of cases, respectively, depending on the imaginary part. The numbers represent measurement uncertainties of up to 15%. If we target 20% retrieval accuracy, the numbers of cases that fall within that threshold are 36%-76% for effective radius, 36%-73% for volume concentration, 98%-100% for surface-area concentration, and 37%-61% for number concentration. That range of numbers again represents a spread in results for different values of the imaginary part. At present, we obtain an accuracy of (on average) 0.1 for the real part. A case study from the ORCALES field campaign is used to illustrate data products obtained with TiARA.Peer reviewe

    A Farm-Level Evaluation of Conditions Under Which Farmers Will Supply Biomass Feedstocks for Energy Production

    Get PDF
    This study evaluated the risk management potential of including biomass crops as a diversification strategy for a grain farm in northwest Tennessee. Results indicate that adding biomass crops to the farm enterprise mix could improve mean net revenues and reduced net revenue variability.Resource /Energy Economics and Policy,

    High-resolution imaging of compact high-velocity clouds (II)

    Get PDF
    We have imaged five compact high-velocity clouds in HI with arcmin angular- and km/s spectral-resolution using the WSRT. Supplementary total-power data, which is fully sensitive to both the cool and warm components of HI, is available for comparison for all the sources, albeit with angular resolutions that vary from 3' to 36'. The fractional HI flux in compact CNM components varies from 4% to 16% in our sample. All objects have at least one local peak in the CNM column which exceeds about 10^19 cm^-2 when observed with arcmin resolution. It is plausible that a peak column density of 1-2x10^19 cm^-2 is a prerequisite for the long-term survival of these sources. One object in our sample, CHVC120-20-443 (Davies' cloud), lies in close projected proximity to the disk of M31. This object is characterized by exceptionally broad linewidths in its CNM concentrations (more than 5 times greater than the median value). These CNM concentrations lie in an arc on the edge of the source facing the M31 disk, while the diffuse HI component of this source has a position offset in the direction of the disk. All of these attributes suggest that CHVC120-20-443 is in a different evolutionary state than most of the other CHVCs which have been studied. Similarly broad CNM linewidths have only been detected in one other object, CHVC111-07-466, which also lies in the Local Group barycenter direction and has the most extreme radial velocity known. A distinct possibility for Davies' cloud seems to be physical interaction of some type with M31. The most likely form of this interaction might be the ram-pressure or tidal- stripping by either one of M31's visible dwarf companions, M32 or NGC205, or else by a dark companion with an associated HI condensation.Comment: 12 pages, 11 (low res.) png figs, accepted for pub. in A&
    • 

    corecore