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Use of bioenergy feedstocks to produce transportation fuels could not only help reduce 

reliance on foreign oil, but could also provide significant environmental benefits and 

invigorate rural economies.  Agriculture is well positioned as a feedstock source because 

the fuels can be utilized with current engine technologies and are compatible with the 

current distribution infrastructure.  The anticipated commercialization of cellulosic to 

ethanol technology will enable fuels to be derived from a diverse portfolio of feedstocks 

from numerous regions of the country. 

The Energy Policy Act of 2005 establishes a renewable fuel requirement for the 

nation, mandating 7.5 billion gallons of renewable fuels by 2012.  Ethanol and biodiesel 

are both defined as eligible renewable fuels.  A more sweeping renewable fuels standard 

was proposed as part of The Biofuels Security Act of 2007 (sponsored by Senator Tom 

Harkin and co-sponsored by Senators Lugar, Biden, Dorgan, and Obama).  This proposal 

would require 10 billion gallons of renewable fuels by 2010, 30 billion by 2020 and 60 

billion by 2030.  Furthermore, the Governors’ Ethanol Coalition has recommended that 

replacing at least 25 percent of petroleum used as transportation fuels by the year 2025 

(Governor’s Ethanol Coalition, 2006).   

The objective of this study is to project the U.S. agricultural sector and economic 

impacts of increasing ethanol and biodiesel production beyond the levels specified in the 

recently enacted renewable fuel standard.  The levels of ethanol production analyzed are 

10, 30, and 60 billion gallons of ethanol annually by 2010, 2020 and 2030, respectively.  

Furthermore, sensitivity to the timing of commercialization of cellulosic feedstock to 

ethanol technology and impacts of associated corn to ethanol industry adjustments 
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associated are projected.  Impacts of producing 1 billion gallons of biodiesel production 

by 2012 and 1.6 billion gallons by 2030 are also projected. 

Prior Research  

Several studies have addressed various aspects bioenergy production and contribution 

toward renewable energy (USDA-OCE, 2002; Urbanchuk, 2001; Shapouri, Duffield, and 

Wang, 2002; Sheehan 2002; Walsh et al, 2003; McLaughlin et al, 2002).   Previous 

economic modeling evaluating agriculture feedstocks for energy has been conducted in 

the context of carbon displacement potential (McCarl and Schneider, 2000) and have 

analyzed long-term and intermediate-run outcomes.  Adjustment costs incurred in the 

short-run for implementing new technologies and/or policies are not considered by these 

models (Schneider, 2000).  The potential regional economic impacts of converting corn 

stover to ethanol have been projected using IMPLAN (English, Menard, and de la Torre 

Ugarte, 2000).   

Methodology 

Key methodological steps to conducting the analysis are definition of biofuels goals, 

selection of representative conversion technologies and collection of associated cost 

information, definition of key assumptions, updating and expansion of POLYSYS (a 

dynamic agricultural sector model), development of a program to integrate POLYSYS 

results into IMPLAN (PII), modification of IMPLAN (economic input output model)  to 

accommodate biomass feedstock production and biofuels conversion industries, and 

scenarios development.  The biofuels targets are 10 billion gallons annually of ethanol by 
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2010, 30 billion by 2020, and 60 billion by 2030, and 1 billion gallons of biodiesel 

production by 2012 and 1.6 billion gallons by 2030.   

The conversion technologies include ethanol from shelled corn, ethanol from 

cellulosic residues (stover, switchgrass, and wheat straw), ethanol from food residues, 

ethanol from wood residues (forest residues, mill wastes, fuel treatment and forestland 

thinnings, harvesting of standing stock is not included), biodiesel from soybeans,  and 

biodiesel from yellow grease/tallow.  Representative facility output, feedstock use, and 

associated costs are developed based on prior studies (McAloon, Taylor, Yee, Ibsen, and 

Wooley, 2000; e-mail correspondence from V. Eidman, 2006; Aden, Ruth, Ibsen,  

Jechura, Neeves, Sheehan, Wallance, Montague, Slayton, and Lukas, 2002; BBI 

International, 2002; English, Jensen, and Menard, 2002; Fortenberry, 2005).  Conversion 

coefficients of cellulose to ethanol are increased linearly for stover, straw and dedicated 

energy crops from 2015 to 2030. Conversion coefficients of feedstocks to corn grain 

ethanol and biodiesel are assumed to increase through 2019 and thereafter remain steady.   

Several key study assumptions are required in addition to setting biofuels targets 

and selecting conversion technologies. Cellulosic to ethanol is assumed to be 

commercially available in 2012.  Switchgrass serves as a proxy for dedicated energy 

crops, with yields increasing over time that range from 1.5 percent to 5 percent, 

depending on region. No till adoption increases from 20 to 55 percent. The available land 

base includes 307 million acres of cropland in major crops plus hay and 56.2 million 

acres of cropland in pasture. Maximum percents of Distiller’s Dry Grains (DDG’s) in 

rations are assumed at 30 percent for beef, 10 percent for dairy, hogs, and broilers.   
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The targeted biofuels production levels plus data on conversion costs for 

agricultural and forest feedstocks are introduced into POLYSYS to estimate the quantity 

and type of energy to be produced from agriculture, as well as the price, net farm income, 

and other agricultural sector impacts.  The POLYSYS model (De La Torre Ugarte and 

Ray, 2000) has the unique ability to provide annual estimates of changes in land use 

resulting from the demand generated by bioenergy industries, including changes in 

economic conditions that affect adjustment costs.   

In regions where dedicated energy crops are determined to be profitable, pasture 

is made available to dedicated energy and other crops.  Loss of forage production is 

replaced with new hay production.  The livestock module in POLYSYS is an integrated 

version of the Economic Research Service’s econometric livestock model. To project the 

potential of dedicated energy crops to provide feedstocks, enterprise budgets and yields 

for switchgrass are incorporated into POLYSYS.  Production is assumed suitable on 368 

million acres.   

To evaluate the potential of crop residues to provide feedstocks to the bioproduct 

markets, POLYSYS includes corn stover and wheat straw response curves that estimate 

stover and straw quantities as a function of corn and wheat grain yields, and stover and 

straw production costs as a function of yields of removable residue. Estimated response 

curves are obtained through the Oak Ridge National Laboratory (Walsh et al, 2003).  

Residues needed to keep erosion at less than or equal to the tolerable soil loss level are 

incorporated.  Total quantities of corn stover and wheat straw that can be collected in 

each county are estimated for each tillage and dominant crop rotation scenario. The costs 
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of collecting corn stover and wheat straw include baling, staging, and nutrient 

replacement.  

The cost of transporting biomass feedstocks from the farm gate to the production 

facilities is added to conversion costs.  An iterative process is used until the 

corresponding price of biomass is equal to current iteration biomass price.  Once this is 

achieved and equivalent ethanol costs of production exist, the model has determined the 

optimal market level of feedstock quantities.  The price at which these wood residues 

feedstocks come into use is determined by regional harvesting costs plus transportation 

costs. 

Distiller’s dry grains from ethanol production and soybean meal from biodiesel 

production are integrated within the model to evaluate how their quantities and prices 

affect the final market equilibrium.  The market price of distiller’s dry grains is estimated 

as a function of corn price.  

For biodiesel, beef and poultry wastes are modeled as a function of beef and 

poultry cash receipts, respectively.  Yellow grease from food waste is a function of 

population.  Soybean meal byproduct from crushing enters into the POLYSYS soybean 

product module where prices are endogenously determined. 

An interface program, the POLYSYS/IMPLAN Integrator (PII), developed at The 

University of Tennessee, takes POLYSYS projections of acreage, price, change in 

government programs, and cost output and makes changes to IMPLAN databases 

(English, Menard, Wilson, and De La Torre Ugarte, 2004).  PII adds an energy crop 

sector to IMPLAN based on information supplied by POLYSYS.  A renewable energy 
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sector is added to each state’s IMPLAN model, and the operating impacts from the 

renewable energy sector are estimated.  IMPLAN employs a regional social accounting 

system to generate a set of balanced economic/social accounts and multipliers (MIG, 

1999).  The model estimates total industry output, employment, and value-added for over 

500 industries.  

Results under three scenarios are compared with a baseline scenario called 

USDAExt, which is an extension of the 2006 USDA baseline.  The first scenario projects 

the impacts of attaining the targets assuming the cellulose-to-ethanol technology would 

be commercially available by 2012 (ETH60).  In this scenario, use of corn grain is kept at 

near production capacity of plants, even with introduction of cellulosic technology.  The 

second scenario allows the corn grain to ethanol industry to adjust as cellulose-to-ethanol 

becomes commercially available in 2012 (ETH60CA).  In the third scenario 

(ETH60CACD), the cellulose-to-ethanol technology would be delayed until 2015 and the 

corn grain based ethanol industry is allowed to adjust in response to cellulosic 

introduction.  Results from these three scenarios are compared with the extended baseline 

to illustrate how various paths of ethanol industry expansion may influence the 

agricultural sector.  Furthermore, results from the scenarios are compared with each other 

to project the impacts of cellulosic delay and the impacts of protection of the corn grain 

to ethanol industry. 

Results 

Under the ETH60 Scenario, the targeted production of ethanol can be achieved for the 

years 2010, 2020, and 2030.  The targeted goals of 1 billion gallons of biodiesel by the 
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year 2012 and 1.6 billion gallons by 2030 can also be achieved.   The amounts of ethanol 

that would be derived from the various feedstocks under the three scenarios are shown in 

Table 1. Under the ETH60 Scenario, through 2012, corn grain continues to be the base of 

ethanol production.  In subsequent years, with the commercial introduction of cellulosic 

technology, the increase of corn grain for ethanol slows down and remains flat after 2020 

at around 14 billion gallons. Initially cellulosic to ethanol conversion relies on wood 

residues, but as dedicated energy crops come into commercial production, they are 

projected to become the dominant feedstocks.  By 2030, even holding corn grain to 

ethanol plants at near capacity, less than one in four gallons of ethanol are projected to be 

derived from corn grain. 

Under the ETH60CA Scenario, use of corn reaches a peak in 2012, but with 

cellulosic introduction declines to less than 8 billion gallons by 2030.  This suggests 

excess production capacity in corn grain to ethanol will appear in 2013, and corn grain 

ethanol plants will likely convert to cellulose or exit the industry. By 2030, as the corn 

grain ethanol industry adjusts, less than one in six gallons of ethanol are projected to be 

derived from corn grain. 

For the ETH60CACD Scenario, in which commercial introduction of cellulosic 

technology is delayed, use of corn for ethanol will not peak at just under 18 billion 

gallons until 2015. After the peak year, there will be a significant reduction in the use of 

grain corn resulting in excess capacity.  With a cellulosic delay, the impacts on the corn 

grain ethanol industry by 2030 are dampened slightly, about 120 million gallons or about 

1.4 percent, as compared with cellulosic introduction in 2012. Also, by 2030, the 



 8

contribution of corn residues is more significant than under the other two scenarios.  

Ethanol from corn stover is about 36 percent higher than the ETH60 Scenario and 12 

percent higher than the ETH60CA Scenario. 

In the years beyond 2012, most of the growth in biodiesel production is projected 

to come from yellow grease and tallow, rather than soybeans.  By 2030, 1 billion gallons 

comes from soybeans, while .6 billion gallons is derived from yellow grease and tallow.  

An alternative target of 2 billion gallons of biodiesel was considered, but to reach this 

target using soybeans as a feedstock required a price above $8 per bushel.  

With a major change in ethanol feedstocks and overall growth in feedstock use, 

land use patterns would change.  For example, under the ETH60 Scenario, dedicated 

energy crops reach about 34.4 million acres by the year 2030 from very low levels in 

2007.  Pasture declines from 56.5 million acres to 24.3 million by 2030.  Corn acreage 

increases from 81 million acres and then declines with the introduction of cellulosic 

technology to around 83 million acres in 2030.  About 32.2 million acres of cropland in 

pasture would come back into hay, dedicated energy crops, and other crop production.  

Acreage planted to soybeans goes from 73.3 million acres in 2007 to 62.7 million acres in 

2030, a reduction of 10.6 million acres coming primarily from the Southeast.  

The projected changes in prices of major crops away from baseline levels are 

shown in Table 2.  For the ETH60 Scenario, the price estimates indicate that corn, wheat, 

and soybeans experience a significant price impact. The price impact for corn peaks 

during the highest period of corn demand for grain ethanol.  By the year 2030, corn prices 

are more than 60 cents above the baseline. For the ETH60CA and ETH60CACD 
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Scenarios, the increases in corn prices by 2030 are slightly dampened compared with the 

ETH60 Scenario, 10 cents per bushel and 2 cents per bushel lower, respectively.  With 

the introduction of cellulosic technology, positive pressure on corn prices is reduced and 

land is released for production of soybeans.  Because the corn grain ethanol industry 

adjusts under the ETH60CA or ETH60CACD Scenarios, soybean price increases above 

baseline are lower than under the ETH60 Scenario.  

As can be seen in Table 2, the various sectors within the livestock industry react 

differently to higher feed prices.  These differences depend on the relative importance of 

corn in rations, importance of feed expenses in costs of production, and by the ability to 

transfer cost of the additional feed expenses through the market channel.  Notably, cattle 

sector impacts are quite different compared with hog and poultry sector impacts. 

Reduction in cattle inventories leads to higher prices that offset the sector’s increased 

production costs and reduces the total expenditures in feed.  Furthermore, dried distillers 

grains (DDG’s) can be more heavily incorporated into cattle rations compared with hog 

or poultry rations.  For hogs and poultry, the inventory adjustments and increase in prices 

are not large enough to compensate for increases in feed costs. Without corn grain 

industry adjustment (ETH60), the net returns to the hog and poultry sectors are more 

negatively affected than when the industry is allowed to adjust (ETH60CA).  In the 

nearer term, the delay of cellulosic introduction also puts negative pressure on hog and 

poultry sector returns relative to 2012 introduction.  

It is important to mention than under the three scenarios considered, the variable 

costs at the farm gate for dedicated energy crops remain between $21.60 and $30.00.  
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Dedicated energy crops farmgate costs would be $22.80 by 2020 and $27.60 by 2030 

under the ETH60 Scenario.  Under the ETH60CA and ETH60CACD Scenarios, the 

farmgate costs of dedicated energy crops would be $26 per ton by 2020 and $30 per ton 

by 2030. 

Under the ETH60 Scenario, there is a projected cumulative increase in net farm 

income over the 2007-2030 of $210 billion. With these increases in net farm income, 

decreases in loan deficiency and countercyclical payments are projected.  The cumulative 

reduction in loan deficiency payments is projected to be nearly $1 billion and the 

cumulative reduction in countercyclical payments is an additional $7.8 billion.  Hence the 

projected cumulative reduction in government payments is $8.7 billion compared with 

baseline. 

The geographic distribution of the cellulosic feedstock production in 2030 for the 

ETH60 Scenario is presented in Figure 1.  As can been seen in Figure 1, by 2030, a wide 

geographic area of the United States contributes cellulosic feedstock. Dedicated energy 

crops production is concentrated in the Southeast, Southern and Northern Plains, while 

corn stover is concentrated in the Midwest.  Wheat straw is concentrated in the Northern 

Plains and Mountain states. The largest availability of wood and forest residues would be 

located west of the Rocky Mountains, in the Southeast, and in New England.   

Under the ETH60 Scenario, by 2030, a total of $110 billion (2006$), annually is 

directly generated in the economy via purchasing inputs, adding value to those inputs, 

and supplying biofuels to the nation. Of these direct impacts, $25 billion are from the 

agricultural sector and $85 billion are from the renewable energy sector. About 236,000 
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jobs are added directly to the agricultural sector, while just under 58,000 jobs are added 

directly to the biofuels sector.  The total impact to the nation’s economy, including 

indirect and induced impacts, is estimated at $368 billion per year creating an estimated 

2.4 million jobs.   

Conclusions 

The analyses performed indicate that U.S. agriculture is in a position to play a significant 

role as a source of energy.  For the entire period through 2030, the cumulative 

displacement could be as high as 10.48 billion barrels of oil, causing a potential reduction 

in imports of $629 billion dollars. In addition to the ethanol, by 2030, 1.6 billion gallons 

of biodiesel per year could be produced.  Overall, for the period 2007 to 2030, the 

estimated accumulated gains in net farm income are over $210 billion; and the 

accumulated potential savings in government payments are estimated to be $150 billion. 

Due to the geographic decentralization of the production of feedstock, economic gains 

are projected to accrue to the majority of regions of the country.  Significant expansion 

beyond 60 billion gallons per year would likely require expansion of the region suitable 

for the production of bioenergy crops, ability to convert other pastureland (beyond 

cropland in pasture) into energy crops; allowing CRP acreage to be used in feedstock 

production, increasing short-rotation wood crops in the Northeast and Northwest regions, 

increased yields above those assumed in the analysis, and/or increasing the efficiency of 

cellulosic conversion.  Further research should examine the agricultural, environmental, 

and economic impacts of one or more these factors changing. 
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Table 1.  Ethanol Production from Feedstocks Under the ETH60, ETHCA, and 
ETHCAD Scenarios 

 Billions of Ethanol Gallons 
  2010 2015 2020 2025 2030
Corn Grain:  
ETH60CACD 10.00 15.93 10.78 9.23 8.90
ETH60CA 10.00 9.60 9.15 8.84 8.78
ETH60 10.00 12.96 14.09 14.09 14.09
Wood Residues:  
ETH60CACD 0.00 1.62 3.77 4.40 5.51
ETH60CA 0.00 4.23 3.75 4.51 5.15
ETH60 0.00 3.63 2.33 4.31 4.54
Wheat Straw:  
ETH60CACD 0.00 0.00 0.46 0.97 1.77
ETH60CA 0.00 0.55 0.41 1.15 1.70
ETH60 0.00 0.26 0.01 0.97 1.14
Corn Stover:  
ETH60CACD 0.00 0.00 0.01 5.69 12.10
ETH60CA 0.00 1.82 0.01 8.37 10.76
ETH60 0.00 0.00 0.00 5.91 8.88
Dedicated Energy Crop:   
ETH60CACD 0.00 0.00 14.40 24.81 32.10
ETH60CA 0.00 3.56 16.66 22.36 34.01
ETH60 0.00 3.40 13.69 19.93 31.71
Total Production:  
ETH60CACD 10.00 17.56 29.41 45.08 60.37
ETH60CA 10.00 19.77 29.97 45.22 60.39
ETH60 10.00  20.25 30.11  45.20 60.35
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Table 2.  Agricultural Sector Impacts Compared with Baseline by Scenario 
Changes in Crop Prices from Baseline 

 Corn Wheat Soybeans  Cotton 

 ($/bushel)  ($/bushel) ($/bushel)  ($/pound) 

Year 
ETH60 
CACD 

ETH60 
CA ETH60

ETH60 
CACD 

ETH60 
CA ETH60

ETH60 
CACD 

ETH60 
CA ETH60  

ETH60
CACD

ETH60
CA 

ETH60

2010 0.86 0.86 0.89 0.11 0.11 0.11 0.75 0.75 0.82 0 0 0

2015 2.05 0.38 0.69 0.46 0.19 0.32 1.42 0.65 1.49 0.02 0.04 0.04

2020 0.19 -0.06 0.36 0 0 0.07 0.75 0.81 0.97 0.03 0.03 0.03

2025 -0.15 -0.14 -0.04 -0.07 -0.06 0.01 0.54 0.55 0.98 0.03 0.02 0.03

2030 0.59 0.52 0.62 0.36 0.36 0.53 0.89 0.91 1.23 0.02 0.02 0.02

 Changes in Livestock Net Returns Compared with Baseline (Million dollars)     

 Cattle  Hogs  Poultry     

Year 
ETH60 
CACD 

ETH60 
CA ETH60

ETH60 
CACD 

ETH60 
CA ETH60

ETH60 
CACD 

ETH60 
CA ETH60     

2010 585 585 585 -522 -522 -522 -1079 -1079 -1079     

2015 3181 995 1401 -1532 165 -246 -3850 -414 -1232     

2020 1161 348 853 369 275 -17 166 -81 -669     

2025 571 75 520 439 413 170 452 164 -440     

2030 713 390 827 -146 -135 -272 -414 -612 -1204     
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Figure 1.  Cellulosic Feedstock Production in 2030 Under the ETH60 Scenario 
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