10 research outputs found

    The effect of chronic kidney disease on tissue formation of in situ tissue-engineered vascular grafts

    Get PDF
    Vascular in situ tissue engineering encompasses a single-step approach with a wide adaptive potential and true off-the-shelf availability for vascular grafts. However, a synchronized balance between breakdown of the scaffold material and neo-tissue formation is essential. Chronic kidney disease (CKD) may influence this balance, lowering the usability of these grafts for vascular access in end-stage CKD patients on dialysis. We aimed to investigate the effects of CKD on in vivo scaffold breakdown and tissue formation in grafts made of electrospun, modular, supramolecular polycarbonate with ureido-pyrimidinone moieties (PC-UPy). We implanted PC-UPy aortic interposition grafts (n = 40) in a rat 5/6th nephrectomy model that mimics systemic conditions in human CKD patients. We studied patency, mechanical stability, extracellular matrix (ECM) components, total cellularity, vascular tissue formation, and vascular calcification in CKD and healthy rats at 2, 4, 8, and 12 weeks post-implantation. Our study shows successful in vivo application of a slow-degrading small-diameter vascular graft that supports adequate in situ vascular tissue formation. Despite systemic inflammation associated with CKD, no influence of CKD on patency (Sham: 95% vs CKD: 100%), mechanical stability, ECM formation (Sirius red +, Sham 16.5% vs CKD 25.0%-p:0.83), tissue composition, and immune cell infiltration was found. We did find a limited increase in vascular calcification at 12 weeks (Sham 0.08% vs CKD 0.80%-p:0.02) in grafts implanted in CKD animals. However, this was not associated with increased stiffness in the explants. Our findings suggest that disease-specific graft design may not be necessary for use in CKD patients on dialysis. </p

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    A plasma creatinine- and urea-based equation to estimate glomerular filtration rate in rats

    No full text
    Monitoring renal function is a vital part of kidney research involving rats. The laborious measurement of glomerular filtration rate (GFR) with administration of exogenous filtration markers does not easily allow serial measurements. Using an in-house database of inulin clearances, we developed and validated a plasma creatinine- and plasma urea-based equation to estimate GFR in a large cohort of male rats [development cohort n = 325, R2 = 0.816, percentage of predictions that fell within 30% of the true value (P30) = 76%] that had high accuracy in the validation cohort (n = 116 rats, R2 = 0.935, P30 = 79%). The equation was less accurate in rats with nonsteady-state creatinine, in which the equation should therefore not be used. In conclusion, applying this equation facilitates easy and repeatable estimates of GFR in rats. NEW & NOTEWORTHY This is the first equation, that we know of, which estimates glomerular filtration rate in rats based on a single measurement of body weight, plasma creatinine, and plasma urea

    Immunogenicity of the mRNA-1273 COVID-19 vaccine in adult patients with inborn errors of immunity

    Get PDF
    BACKGROUND: Patients with inborn errors of immunity (IEI) are at increased risk of severe coronavirus disease-2019 (COVID-19). Effective vaccination against COVID-19 is therefore of great importance in this group, but little is known about the immunogenicity of COVID-19 vaccines in these patients. OBJECTIVES: We studied humoral and cellular immune responses after mRNA-1273 COVID-19 vaccination in adult IEI patients. METHODS: In a prospective, controlled, multicenter study 505 IEI patients (common variable immunodeficiency (CVID), isolated or undefined antibody deficiencies, X-linked agammaglobulinemia (XLA), combined immunodeficiency (CID), phagocyte defects) and 192 controls were included. All participants received two doses of the mRNA-1273 COVID-19 vaccine. Levels of SARS-CoV-2-specific binding antibodies, neutralizing antibodies, and T-cell responses were assessed at baseline, 28 days after first and 28 days after second vaccination. RESULTS: Seroconversion rates in patients with clinically mild antibody deficiencies and phagocyte defects were similar to healthy controls, but seroconversion rates in patients with more severe IEI, like CVID and CID, were lower. Binding antibody titers correlated well to the presence of neutralizing antibodies. T-cell responses were comparable to controls in all IEI cohorts, with the exception of CVID patients. The presence of non-infectious complications and the use of immunosuppressive drugs in CVID patients were negatively correlated with the antibody response. CONCLUSION: COVID-19 vaccination with mRNA-1273 was immunogenic in mild antibody deficiencies and phagocyte defects and in most patients with CID and CVID. Lowest response was detected in XLA and in CVID patients with non-infectious complications. The assessment of longevity of immune responses in these vulnerable patient groups will guide decision-making for additional vaccinations

    Gender and body size affect the response of erythrocyte folate to folic acid treatment

    No full text
    The recommended dietary allowance (RDA) differs between men and women for some vitamins, but not for folate. The RDA for folate is derived mainly from metabolic studies in women. We assessed if men differ from women in their response of erythrocyte folate to folic acid supplementation. We used data from 2 randomized placebo-controlled trials with folic acid: a 3-y trial in which subjects ingested 800 mu g/d of folic acid (294 men and 112 women) and a 12-wk trial in which 187 men and 129 women ingested 0, 50, 100, 200, 400, 600, or 800 mu g/d of folic acid in a parallel design (n = 38-42 per treatment group). In the 3-y trial, the erythrocyte folate concentration increased 10% (143 nmol/L, [95%Cl 46, 241]) less in men than in women. In the 12-wk trial, regression analysis showed that the response of erythrocyte folate upon folic acid intake for men was 47 nmol/L lower than for women (P for beta(gender) = 0.022); for an intake of 800 mu g/d folic acid, this resulted in a 5% lower response in men than in women. Differences in lean body size explained 56% of the difference in response of erythrocyte folate between men and women in the 3-y trial and 70% in the 12-wk trial. Men need more folic acid than women to achieve the same erythrocyte folate concentration, mainly because men have a larger lean body mass. This could be an indication that the RDA for folate should be higher for men than for women, or that the RDA should be expressed per kilogram of lean body mass

    Mutations in DEPDC5 cause familial focal epilepsy with variable foci

    No full text
    <p>The majority of epilepsies are focal in origin, with seizures emanating from one brain region. Although focal epilepsies often arise from structural brain lesions, many affected individuals have normal brain imaging. The etiology is unknown in the majority of individuals, although genetic factors are increasingly recognized. Autosomal dominant familial focal epilepsy with variable foci (FFEVF) is notable because family members have seizures originating from different cortical regions(1). Using exome sequencing, we detected DEPDC5 mutations in two affected families. We subsequently identified mutations in five of six additional published large families with FFEVF. Study of families with focal epilepsy that were too small for conventional clinical diagnosis with FFEVF identified DEPDC5 mutations in approximately 12% of families (10/82). This high frequency establishes DEPDC5 mutations as a common cause of familial focal epilepsies. Shared homology with G protein signaling molecules and localization in human neurons suggest a role of DEPDC5 in neuronal signal transduction.</p>

    Genomic reconstruction of the SARS-CoV-2 epidemic in England

    Get PDF
    AbstractThe evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus leads to new variants that warrant timely epidemiological characterization. Here we use the dense genomic surveillance data generated by the COVID-19 Genomics UK Consortium to reconstruct the dynamics of 71 different lineages in each of 315 English local authorities between September 2020 and June 2021. This analysis reveals a series of subepidemics that peaked in early autumn 2020, followed by a jump in transmissibility of the B.1.1.7/Alpha lineage. The Alpha variant grew when other lineages declined during the second national lockdown and regionally tiered restrictions between November and December 2020. A third more stringent national lockdown suppressed the Alpha variant and eliminated nearly all other lineages in early 2021. Yet a series of variants (most of which contained the spike E484K mutation) defied these trends and persisted at moderately increasing proportions. However, by accounting for sustained introductions, we found that the transmissibility of these variants is unlikely to have exceeded the transmissibility of the Alpha variant. Finally, B.1.617.2/Delta was repeatedly introduced in England and grew rapidly in early summer 2021, constituting approximately 98% of sampled SARS-CoV-2 genomes on 26 June 2021.</jats:p
    corecore