5 research outputs found

    Early assessment of seasonal forage availability for mitigating the impact of drought on East African pastoralists

    Get PDF
    Author Posting.© The Author(s), 2015. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Remote Sensing of Environment 174 (2016): 44-55, doi:10.1016/j.rse.2015.12.003.Pastoralist households across East Africa face major livestock losses during drought periods that can cause persistent poverty. For Kenya and southern Ethiopia, an existing index insurance scheme aims to reduce the adverse effects of such losses. The scheme insures individual households through an area-aggregated seasonal forage scarcity index derived from remotely-sensed normalized difference vegetation index (NDVI) time series. Until recently, insurance contracts covered animal losses and indemnity payouts were consequently made late in the season, based on a forage scarcity index incorporating both wet and dry season NDVI data. Season timing and duration were fixed for the whole area (March-September for long rains, October-February for short rains). Due to demand for asset protection insurance (pre-loss intervention) our aim was to identify earlier payout options by shortening the temporal integration period of the index. We used 250m-resolution 10-day NDVI composites for 2001-2014 from the Moderate Resolution Imaging Spectroradiometer (MODIS). To better describe the period during which forage develops, we first retrieved per-pixel average season start- and end-dates using a phenological model. These dates were averaged per insurance unit to obtain unit-specific growing period definitions. With these definitions a new forage scarcity index was calculated. We then examined if shortening the temporal period further could effectively predict most (>90%) of the interannual variability of the new index, and assessed the effects of shortening the period on indemnity payouts. Our analysis shows that insurance payouts could be made one to three months earlier as compared to the current index definition, depending on the insurance unit. This would allow pastoralists to use indemnity payments to protect their livestock through purchase of forage, water, or medicines.AV was funded under a contract from the International Livestock Research Institute. CCU was supported by the U.S. National Science Foundation under grant OCE-1203892.2016-12-1

    Historical extension of operational NDVI products for livestock insurance in Kenya

    Get PDF
    Droughts induce livestock losses that severely affect Kenyan pastoralists. Recent index insurance schemes have the potential of being a viable tool for insuring pastoralists against drought-related risk. Such schemes require as input a forage scarcity (or drought) index that can be reliably updated in near real-time, and that strongly relates to livestock mortality. Generally, a long record (>25 years) of the index is needed to correctly estimate mortality risk and calculate the related insurance premium. Data from current operational satellites used for large-scale vegetation monitoring span over a maximum of 15 years, a time period that is considered insufficient for accurate premium computation. This study examines how operational NDVI datasets compare to, and could be combined with the non-operational recently constructed 30-year GIMMS AVHRR record (1981–2011) to provide a near-real time drought index with a long term archive for the arid lands of Kenya. We compared six freely available, near-real time NDVI products: five from MODIS and one from SPOT-VEGETATION. Prior to comparison, all datasets were averaged in time for the two vegetative seasons in Kenya, and aggregated spatially at the administrative division level at which the insurance is offered. The feasibility of extending the resulting aggregated drought indices back in time was assessed using jackknifed R2 statistics (leave-one-year-out) for the overlapping period 2002–2011. We found that division-specific models were more effective than a global model for linking the division-level temporal variability of the index between NDVI products. Based on our results, good scope exists for historically extending the aggregated drought index, thus providing a longer operational record for insurance purposes. We showed that this extension may have large effects on the calculated insurance premium. Finally, we discuss several possible improvements to the drought index

    Early assessment of seasonal forage availability for mitigating the impact of drought on East African pastoralists

    No full text
    Pastoralist households across East Africa face major livestock losses during drought periods that can cause persistent poverty. For Kenya and southern Ethiopia, an existing index insurance scheme aims to reduce the adverse effects of such losses. The scheme insures individual households through an area-aggregated seasonal forage scarcity index derived from remotely-sensed normalized difference vegetation index (NDVI) time series. Until recently, insurance contracts covered animal losses and indemnity payouts were consequently made late in the season, based on a forage scarcity index incorporating both wet and dry season NDVI data. Season timing and duration were fixed for the whole area (March–September for long rains, October–February for short rains). Due to demand for asset protection insurance (pre-loss intervention) our aim was to identify earlier payout options by shortening the temporal integration period of the index. We used 250 m-resolution 10-day NDVI composites for 2001–2014 from the Moderate Resolution Imaging Spectroradiometer (MODIS). To better describe the period during which forage develops, we first retrieved per-pixel average season start- and end-dates using a phenological model. These dates were averaged per insurance unit to obtain unit-specific growing period definitions. With these definitions a new forage scarcity index was calculated. We then examined if shortening the temporal period further could effectively predict most (N90%) of the interannual variability of the new index, and assessed the effects of shortening the period on indemnity payouts. Our analysis shows that insurance payouts could be made one to three months earlier as compared to the current index definition, depending on the insurance unit. This would allow pastoralists to use indemnity payments to protect their livestock through purchase of forage, water, or medicines

    Mapping Maize Cropping Patterns in Dak Lak, Vietnam Through MODIS EVI Time Series

    No full text
    Land use maps specifying up-to-date acreage information on maize (Zea mays L.) cropping patterns are required by many stakeholders in Vietnam. Government statistics, however, lag behind by one year, and the official land use maps are only updated at 5-year intervals. The aim of this study was to apply the Savitzky–Golay algorithm to reconstruct noisy Enhanced Vegetation Index (EVI) time series (2003–2018) from Terra Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Indices (MOD13Q1) to allow timely detection of changes in maize crop phenology, and then to employ a linear kernel Support Vector Machine (SVM) classifier on the reconstructed EVI time series to prepare the present-day maize cropping pattern map of Dak Lak province of Vietnam. The method was able to specify the spatial extent of areas cropped to maize with an overall map accuracy of 79% and could also differentiate the areas cropped to maize just once versus twice annually. The by-district mapped maize acreage shows a good agreement with the official governmental data, with a 0.93 correlation coefficient (r) and a root mean square deviation (RMSD) of 1624 ha
    corecore