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Abstract 

Pastoralist households across East Africa face major livestock losses during drought periods that 

can cause persistent poverty. For Kenya and southern Ethiopia, an existing index insurance 

scheme aims to reduce the adverse effects of such losses. The scheme insures individual 

households through an area-aggregated seasonal forage scarcity index derived from remotely-

sensed normalized difference vegetation index (NDVI) time series. Until recently, insurance 

contracts covered animal losses and indemnity payouts were consequently made late in the 

season, based on a forage scarcity index incorporating both wet and dry season NDVI data. 

Season timing and duration were fixed for the whole area (March-September for long rains, 

October-February for short rains). Due to demand for asset protection insurance (pre-loss 

intervention) our aim was to identify earlier payout options by shortening the temporal 

integration period of the index. We used 250m-resolution 10-day NDVI composites for 2001-

2014 from the Moderate Resolution Imaging Spectroradiometer (MODIS). To better describe the 

period during which forage develops, we first retrieved per-pixel average season start- and end-

dates using a phenological model. These dates were averaged per insurance unit to obtain unit-

specific growing period definitions. With these definitions a new forage scarcity index was 

calculated. We then examined if shortening the temporal period further could effectively predict 

most (>90%) of the interannual variability of the new index, and assessed the effects of 

shortening the period on indemnity payouts. Our analysis shows that insurance payouts could be 

made one to three months earlier as compared to the current index definition, depending on the 

insurance unit. This would allow pastoralists to use indemnity payments to protect their livestock 

through purchase of forage, water, or medicines. 

 

Keywords:  drought, MODIS, NDVI time series, phenology, index insurance, livestock 

mortality 
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1 Introduction 

Climate variability causes large inter-seasonal fluctuations of rainfall across East Africa. Large 

parts of East Africa have two rainfall seasons per year with rains from approximately March to 

May - commonly referred to as ‘long rains’ - and the ‘short rains’ during October-December 

(Herrmann and Mohr 2011; Vrieling et al. 2013). While rainfall variability during the short rains 

is strongly influenced by Indian Ocean sea surface temperatures that modulate atmospheric 

circulation and convection (e.g. Ummenhofer et al. 2009), climatic drivers for the long rain 

variability are less clear (Camberlin and Okoola 2003; Lyon 2014; Williams and Funk 2011). 

Irrespective of the determinants of this variability, seasonal rainfall fluctuations notoriously and 

frequently lead to drought conditions in the region (Hastenrath et al. 2007; Rojas et al. 2011; 

Viste et al. 2013) thereby affecting large numbers of households that predominantly depend on 

sufficient rainfall for sustaining their livelihoods.  

 

Pastoralist households that reside in the region’s arid and semi-arid lands (ASAL) are one of the 

groups strongly affected by droughts. Dry years can bring about a high mortality of their 

livestock due to reduced forage and water availability and outbreaks of epidemic diseases, 

especially if adverse conditions persist during multiple seasons (Megersa et al. 2014a). Although 

pastoralists are a heterogeneous group in terms of wealth (Little et al. 2008), those with already 

small herd sizes risk falling into persistent poverty after drought-induced livestock losses 

(Barnett et al. 2008; Lybbert et al. 2004; Toth 2015). Due to the spatially covariate nature of 

drought with its effects generally felt across large regions, coping mechanisms such as herd 

migration or local-sharing norms (Dixit et al. 2013) are often inadequate to prevent adverse 

impacts on livelihoods. Moreover, the increased demand for limited resources in confined areas 

can cause violent conflicts between pastoralist groups (Detges 2014; Raleigh and Kniveton 

2012). Hence, given the significance of the drought hazard, efficient mitigation strategies are 

needed that reduce impacts of drought-related risk to pastoralists in East Africa.  

 

One promising strategy is to offer pastoralists insurance that pays out when drought-related 

livestock losses occur, or alternatively prior to losses in an effort to protect against mortality. 

Traditional claim-based insurance would require expensive loss verification, making it an 

unviable option for remote pastoralists with small herds (de Leeuw et al. 2014). An alternative is 
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index-based insurance, whereby indemnity payouts are made on the basis of a biophysical index 

that correlates with the losses incurred (Barnett and Mahul 2007; Brown et al. 2011; Leblois and 

Quirion 2013). During the past 10 years, many index-based insurance schemes were piloted in 

developing countries to insure households against negative weather impacts on crop yields and 

livestock mortality (Miranda and Farrin 2012). One of the critical elements for the success of 

such schemes is to have a low so-called ‘basis risk’, i.e. the risk that households do not get paid 

when they suffer losses and vice-versa. Because basis risk depends on the strength of the 

correlation between the index and losses, index selection is important. Often-used data sources 

for index construction include rainfall, either measured by rain gauges or estimated from satellite 

observations (Tapiador et al. 2012), and satellite-derived vegetation indices like the Normalized 

Difference Vegetation Index (NDVI: Tucker 1979). However, after data source selection many 

design options remain, e.g. regarding spatial and temporal integration (de Leeuw et al. 2014), 

before the data source can be reliably used as an index (Brown et al. 2011).   

 

In 2010, an index-based livestock insurance (IBLI) project was piloted in Marsabit County, 

northern Kenya (Chantarat et al. 2013), and subsequently expanded to other areas of Kenya and 

southern Ethiopia. From the onset of the pilot phase to present, IBLI has used satellite-derived 

NDVI time series to construct a seasonal forage scarcity index. However, the method to translate 

the original NDVI series into the index has changed through the years in an ongoing attempt to 

reduce basis risk (Vrieling et al. 2014). In the current design, 10-daily NDVI composites from 

MODIS (Moderate Resolution Imaging Spectroradiometer) at 250m resolution are spatially 

averaged per administrative unit, temporally averaged per season, and subsequently compared 

between years to estimate the relative seasonal forage condition per unit. Pastoralists within an 

administrative unit receive a payment when the index falls below a threshold, which can be 

specified in terms of return period (e.g. a payment is made whenever the index is less or equal to 

the index reading corresponding to a below-normal season with an average recurrence interval of 

five years). Originally for Marsabit the index was statistically fitted to household-level livestock 

mortality data (Chantarat et al. 2013), but because of the lack of mortality data or poorer data 

quality for other regions IBLI moved to a more straightforward ‘forage scarcity contract’ that 

uses the NDVI-derived index and its temporal characteristics directly. Although the evaluation of 

basis risk in these contracts requires validation, we can already envisage further index 
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improvements merely from a remote sensing perspective (e.g., see the discussion in Vrieling et 

al. 2014). One such improvement has become more urgent following repeated demand by 

pastoralist groups for earlier indemnity payouts after the onset of drought events. 

 

Payouts to insured pastoralist households can only be made after the season for which the index 

is calculated is concluded. Until recently, potential payout periods were fixed in March and 

October, because the two temporal windows used for temporal averaging were defined as the 

coupled long rains-long dry season (LRLD: March-September) and the coupled short rains-short 

dry (SRSD: October-February) season (Chantarat et al. 2013). However, inclusion of the full dry 

periods (approximately July-September for LD and January-February for SR) implies that 

livestock suffer forage scarcity for a longer period in case of a failed rainy season, and may have 

died before a payout is made. Therefore, this scheme financially compensates losses and allows 

pastoralists to replace dead animals, rather than creating options for pastoralists to protect 

animals through purchase of fodder, water, or medicines or other costly mitigating interventions. 

Noting that biomass (i.e. forage) is not developing during the dry periods and consequently 

NDVI provides limited information about forage conditions in these periods (Vrieling et al. 

2014), good scope exists to shorten the temporal windows without losing valuable information 

on seasonal forage availability. An effective approach to better define the period of forage 

development across the season is to estimate season start- and end-dates directly from temporal 

NDVI profiles by analyzing vegetation green-up and decay using phenological analysis (Meroni 

et al. 2014; Vrieling et al. 2011).  

 

The goal of this paper is to achieve a better identification of the temporal integration period for 

IBLI’s forage scarcity index, which can result in earlier insurance payouts to pastoralists. For this 

purpose, we first estimated location-specific season start- and end-dates from phenological 

analysis of NDVI time series. Subsequently we evaluated if end-dates can be brought forward 

further in time while retaining good predictability of end-of-season index variability. 

 

2 Study area and data 

The study area comprises a total of 131 spatial units, which are the current insurance units used 

in the IBLI project. The units cover nine Kenyan counties (Baringo, Garissa, Isiolo, Mandera, 
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Marsabit, Samburu, Tana River, Turkana, and Wajir) and the Borana zone of southern Ethiopia 

(Fig. 1). They are based on administrative boundaries, but a number of adjustments were made in 

collaboration with local stakeholders to better reflect agro-ecological conditions and rangelands 

utilized by households residing in the unit. The unit size is variable ranging from approximately 

100 km2 to 13,000 km2 (average 3000 km2) with smaller units principally located in Baringo 

county. Based on a 30-year TAMSAT rainfall climatology (Tropical Applications of 

Meteorology using SATellite and ground-based observations: Maidment et al. 2014) the study 

area has an average annual rainfall between 150 and 500 mm, the only exceptions being Baringo 

County (~700 mm) and the west part of Borana (~550 mm). Most inhabitants of the study area 

depend on livestock for their livelihood, although crop cultivation is increasingly important in 

the relatively wetter areas as a diversification strategy (Rufino et al. 2013). In the drier parts, the 

more drought-resistant camels and goats are the dominant livestock species, whereas in wetter 

parts cattle and sheep prevail. Given the recurrent droughts in the region, pastoralists are also 

shifting their livestock portfolios to include the more drought-hardy camel and goats (Boru et al. 

2014; Megersa et al. 2014b).  

 

The NDVI time series used in this study is the eMODIS product that the United States 

Geological Survey (USGS) produces from MODIS data acquired by the Terra satellite, currently 

operationally used in IBLI. The eMODIS product consists of 10-day maximum value NDVI 

composites at 250m resolution (Jenkerson et al. 2010). Although the composites are produced 

every five days resulting in six temporally overlapping composites per month, we only used the 

composites for day 1-10, 11-20, and 21-last day of each month. To reduce remaining 

atmospheric effects that degrade the NDVI signal (e.g., clouds), USGS applies a temporal 

smoothing operator, a standard technique for pre-processing NDVI time series. The operator 

used for the eMODIS product is the Swets algorithm; for each pixel time series a weighted least-

squares regression is applied to a moving temporal window assigning largest weights to local 

peaks in the NDVI profile, and smallest weights to local valleys (Swets et al. 1999) and resulting 

in multiple regression lines for each data point. Averaging these lines for each point and 

interpolation between data points results in a continuous smoothed NDVI profile. We used the 

filtered eMODIS data for the East Africa window from March 2001 to September 2014, covering 

precisely 14 LRLD (March-September) and 13 SRSD (October-February) seasons. 
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3 Methods 

3.1 Phenological analysis from NDVI series 

Phenology is the study of the timing of biological events. In relation to satellite observations, the 

term “land surface phenology” is frequently used to refer to the analysis of spatial-temporal 

patterns of vegetation development (de Beurs and Henebry 2005). In this study we applied 

phenological analysis of NDVI series to estimate location-specific start-of-season (SOS) and 

end-of-season (EOS) with the aim to describe the key period when forage biomass develops. 

Many approaches exist to perform phenological analysis from NDVI time series (de Beurs and 

Henebry 2010). In this study, we chose the approach recently published by Meroni et al. (2014), 

which is well capable of dealing with the bimodal seasonality common to East Africa. The 

processing steps performed independently on each pixel include: 

1) For the entire eMODIS NDVI time series, we evaluated if at least 60% of the 10-day 

composites had valid NDVI values for land (between 0.0 and 1.0) and if the dynamic range 

(here taken as the difference between the 95th and 5th percentile of the time series values) 

was at least 0.10. If these conditions were not met, the pixel was masked out. 

2) We assessed the seasonality of the NDVI time series (i.e. uni- or bimodal). To achieve this, 

we deviated from the original description by Meroni et al. (2014). Whereas they used an 

autocorrelogram, here we applied a Lomb normalized periodogram (Scargle 1982) to 

evaluate the pixel’s power spectrum and the ratio between the power associated to an 

annual single and double frequency. Comparing visually a large number of NDVI temporal 

profiles with this ratio, a threshold value of 6 was selected below which a pixel was 

labelled as bimodal. The periodogram was preferred to the autocorrelogram as the latter 

failed to detect the correct seasonality when the NDVI time series showed poor periodicity 

(i.e., lack of a dominant evolution pattern throughout the years) or predominance of one of 

the two growing seasons. 

3) Multi-annual median values for each 10-day period were calculated. Based on the ‘median 

year’ and the estimated seasonality, the NDVI minima were set as breakpoints between 

seasons. To remove local minima, the ‘median year’ is iteratively smoothed until the 

number of breakpoints match the expected seasonality. This is achieved through applying a 

weighted moving average filter that assigns larger weight to central values. 
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4) For each individual season, i.e. the NDVI values falling between two breakpoints, a 

parametric double hyperbolic tangent model was fitted to the data. 

5) SOS was then estimated as the moment when the fitted NDVI model for the season 

exceeded 20% of the local growing amplitude (i.e. between minimum NDVI before green-

up and maximum NDVI of that season), and EOS when it falls below 80% of the decay 

amplitude (i.e. between maximum NDVI of the season and the following minimum NDVI 

after decay). 

 

Several thresholds have been proposed to obtain SOS and EOS estimates from the amplitude of 

vegetation index time series ranging from 10% to 50% depending on the phenological event and 

vegetation type targeted (e.g. Jönsson and Eklundh 2002; White et al. 1997). With the objective 

of accumulating the NDVI over the season to get a proxy of total season biomass production 

(section 3.2), we set the SOS and EOS thresholds to 20% and 80% of the amplitude range in 

order to cover the part of the season when most of the biomass production occurs. While we 

acknowledge that a particular threshold choice is to some degree arbitrary, the sensitivity of the 

threshold choice on the biomass proxy is relatively low, because 1) it affects the period for which 

NDVI is averaged at moments (i.e., the beginning and end of season) when NDVI is small and 

has limited temporal variability compared to the central part of the season, thus providing a 

relatively small contribution to the seasonal value, and 2) the same thresholds are applied for the 

entire analysis, allowing a consistent relative comparison between the seasonal indices. 

 

The NDVI phenological analysis resulted per pixel in a 14-year time series of season-specific 

SOS and EOS values. Given the dominance of bimodal seasons across the study area, we used 

these values to calculate the multi-annual average and standard deviation of SOS and EOS 

estimates per pixel for each season (long and short rains). For each insurance unit (U), we then 

computed the spatial average of these measures by considering all pixels for which bimodality 

was detected inside the unit. This gave per unit the average SOS and EOS estimate as well as its 

(temporal) standard deviation. With the aim of setting a fixed temporal window for which the 

index is to be computed, we widened the temporal range defined by the average SOS and EOS 

estimate to take into account possible earlier [later] than average start [end] of seasons. For this 

purpose we considered the information provided by the temporal standard deviation of the two 
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events for each unit as a measure of the interannual variability of the seasonality. To define the 

time period to be used, two constraints were considered. First, widening the window has the 

desired effect of including earlier (or later) than usual growing seasons but also the undesired 

effect of including more out-of-season signal. Second, widening the temporal window should not 

result in an overlap between the end and the start of two consecutive seasons for any spatial unit. 

This latter condition was satisfied by subtracting half a standard deviation from the area-average 

SOS estimate and adding half a standard deviation to the EOS estimate. We finally translated the 

resulting dates into a number from 1 to 36, reflecting the 10-day period (or: dekad) that the date 

represents, i.e. 1 being 1-10 January. We further refer to these adjusted unit-specific 10-day 

periods as 𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈∗  and 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗  (where the asterisk refers to the adjustment and U to the insurance 

unit).  

 

 

3.2 Forage scarcity index calculation 

The forage scarcity index indicates how forage conditions for a specific season compare to the 

multi-annual average conditions and is computed with the processing steps summarized in Fig. 2. 

First, per insurance unit, a spatial average (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑡𝑡 ) for each 10-day time step t is calculated from 

each NDVI composite (Fig. 2b). For computing 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑡𝑡 , we excluded all pixels for which the 

phenological analysis found no clear seasonality (section 3.1). These generally correspond to 

extremely arid areas with limited forage presence. Pixels with unimodal seasonality were 

retained however, as these may constitute important sources of forage. We can write this step as: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑡𝑡 = ∑ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑡𝑡
𝑝𝑝=𝑁𝑁
𝑝𝑝=1 𝑁𝑁⁄        ,𝑝𝑝 ∈ 𝑈𝑈        (1) 

 

where p is one of the N pixel locations within unit U for which the phenological analysis gave a 

uni- or bimodal seasonality. Using unit-specific 𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈∗  and 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗  (section 3.1) we then performed 

temporal averaging of the spatial aggregates (Fig. 2c) resulting in a seasonal average NDVI per 

unit  (Fig. 2d), i.e.:  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠 = ∑ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑡𝑡
𝑡𝑡=𝐸𝐸𝐸𝐸𝐸𝐸𝑈𝑈

∗

𝑡𝑡=𝐸𝐸𝐸𝐸𝐸𝐸𝑈𝑈
∗ 𝑇𝑇�          (2) 
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where s represents a long rain or short rain season in a specific year, and T is the total number of 

time periods t within that season (as defined by 𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈∗  and 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗ ). To assess how 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠  relates 

to multi-annual normal conditions, it is transformed into a z-score, using the seasonal average 

NDVI (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠���������) and its standard deviation (𝜎𝜎(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠)) based on all years (Fig. 2e). This z-score 

indicates how many standard deviations 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠  is greater or less than 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠���������. 

𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈
𝑠𝑠 −𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈

𝑠𝑠����������

𝜎𝜎(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈
𝑠𝑠 )

        (3) 

 

Given the dominant bimodality in the region, the average and standard deviation are calculated 

separately for the long and the short rain seasons. 

 

 

3.3 Predictability of the forage scarcity index before end-of-season 

To assess if 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗  dates can be brought further forward in time, we evaluated for each unit if the 

temporal variability of the forage scarcity index (𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠 ) can be accurately predicted before 

𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗ . To achieve this, we adapted Eq. (2) in order to integrate 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑡𝑡  not merely over the full 

phenological cycle, but also over shorter time periods, i.e. from 𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈∗  until 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗ − 𝑡𝑡 

(t=1,2,3,…). In addition to a 14-year series of 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠  for the long rains, and 13-year series of 

𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠  for the short rains, we now also obtain the same series for a partial season (ps), i.e. 

𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈
𝑝𝑝𝑠𝑠.  

 

Separately for the long and short rains, we applied a jackknife technique (leaving one year out at 

the time) to evaluate the predictability of 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠  based on 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈
𝑝𝑝𝑠𝑠. For each jackknifed year, 

we estimated linear regression coefficients on the remaining dataset, modelling 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠  based 

on 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈
𝑝𝑝𝑠𝑠. For example for the long rains, jackknifing 14 times resulted in 14 predictions of 

𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠  (i.e. 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠� ). We note that a possible alternative approach towards shortening the 

season only focusing on left-tail drought events (that would translate into indemnity payouts) 

would result in too few data points per unit; hence we focus on the full interannual index 

variability. We then computed the coefficient of determination between the predicted and 

original  𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠  series as follows: 
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𝑅𝑅𝑐𝑐𝑐𝑐2 = 1 − ∑ (𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈
𝑠𝑠 −𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈

𝑠𝑠� )2𝑠𝑠=2014
𝑠𝑠=2001

∑ (𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈
𝑠𝑠 −𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈

𝑠𝑠�����������)2𝑠𝑠=2014
𝑠𝑠=2001

      (4) 

 

where 𝑅𝑅𝑐𝑐𝑐𝑐2  is the cross-validated coefficient of determination, and 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠���������� is the multi-annual 

average 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠  (which is equal to 0 when considering all years based on the definition of the z-

score). Rather than a simple 𝑅𝑅2 that expresses the variance explained between 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈
𝑝𝑝𝑠𝑠 and 

𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠 , the 𝑅𝑅𝑐𝑐𝑐𝑐2  expresses how accurately 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈
𝑝𝑝𝑠𝑠 can predict 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠  with a linear model. 

Following the calculation of 𝑅𝑅𝑐𝑐𝑐𝑐2  for all possible temporal definitions of 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈
𝑝𝑝𝑠𝑠, we then 

determined per insurance unit the earliest 10-day period when 𝑅𝑅𝑐𝑐𝑐𝑐2  was greater than 0.90. We 

refer to this period here as 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗90. The threshold value of 0.90 was selected as it represents a 

highly accurate prediction, within 10%, of the interannual 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠  variability. 

 

3.4 Implications for indemnity payouts 

To evaluate the effect of shortened integration periods on indemnity payouts, we apply a simple 

insurance model to both the 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠  and the 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈
𝑝𝑝𝑠𝑠 series that use the 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗90 definitions for 

each unit. The model calculates the indemnity payout P (as percentage of the insured amount) as 

a function of the 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠  (or 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈
𝑝𝑝𝑠𝑠). It can be written as: 

𝑃𝑃 = �
100, 𝑖𝑖𝑖𝑖 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠 < 𝑒𝑒𝑒𝑒𝑖𝑖𝑡𝑡
100 ∗ (𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑒𝑒𝑡𝑡 −  𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠 ) (𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑒𝑒𝑡𝑡 − 𝑒𝑒𝑒𝑒𝑖𝑖𝑡𝑡),⁄ 𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑒𝑒𝑡𝑡 > 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠 > 𝑒𝑒𝑒𝑒𝑖𝑖𝑡𝑡
0, 𝑖𝑖𝑖𝑖 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠 > 𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑒𝑒𝑡𝑡

       (5) 

 

where the trigger is the z-score threshold below which the insurance starts to pay, and exit is the 

z-score level corresponding to maximum payment (100%). To set trigger and exit levels, we 

translated the return period to a corresponding z-score. Following IBLI’s current 

implementation, we set exit as a one-in-hundred seasons event (z=-2.326) and trigger as a one-

in-five seasons event (z=-0.842) and evaluated the extent to which indemnity payouts varied 

between the 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠  and the 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈
𝑝𝑝𝑠𝑠 series, taking payouts based on 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠  as the reference. 

In addition, we assessed how sensitive corresponding payment decisions and amounts were to 

varying trigger levels. 
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4 Results 

4.1 NDVI-derived start- and end-of-season 

Bimodal seasonality is dominant across the study area (90% of pixels: Fig. 3a). Out of the 131 

insurance units, only four units have more pixels (between 6 and 28%) with identified 

unimodality as compared to bimodality. These are all small-sized units (<700 km2) located in 

Baringo county. In this region, rainfall-based seasonality analyses also found a complex spatial 

pattern of uni- and bimodality (Herrmann and Mohr 2011). No seasonality was found for 6% of 

all pixels concentrated in hyperarid regions around Lake Turkana, i.e. in Turkana and in 

Marsabit (Chalbi Desert). These regions were in fact masked due to their very small NDVI 

dynamic range.  

 

The long rains growing season extends on average from early April (Fig. 3b) to early July (Fig. 

3c), and the short rains from mid-October (Fig. 3e) to late January (Fig. 3f). Important deviations 

from this average exist. For example, the short rains start earlier (late August, early September) 

in higher-elevation zones of Baringo, Borana, and Turkana (Fig. 3e). Another example is the 

much later end of the long rains close to the Indian Ocean coast in Garissa (Fig. 3c). The start- 

and end-dates and their spatial patterns show reasonable agreement with other phenological 

retrievals from coarser-resolution NDVI series (Meroni et al. 2014; Vrieling et al. 2013), 

although our current results offer more spatial detail and attain spatially-consistent retrievals for 

a larger part of the study area. In the absence of ground observations of vegetation phenological 

development, detailed validation of our results (as for example performed by White et al. 2009) 

is not possible; however, the seasonality and mean phenology retrieved by the algorithm were 

judged to be plausible by experts and field technicians at the International Livestock Research 

Institute, and are consistent with the typical seasonal calendars for north-eastern Kenya and 

southern Ethiopia from the Famine Early Warning System Network (FEWS-NET 2015a, b). For 

clarity, we stress that SOS is estimated here as the moment when 20% of the local growing 

amplitude is exceeded. Because in water-limited conditions vegetation green-up does not start 

until after rains have raised soil moisture content needed for plant growth, rainfall onset can be 

up to one month ahead of our SOS estimates, depending on precise onset definitions used 

(Vrieling et al. 2011; Vrieling et al. 2013). 
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4.2 Earlier assessment of forage conditions from season predictability analysis 

The period between 𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈∗  and 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗  (Figs. 4a,b,d,e) is on average slightly longer than for the 

pixel-based results of Fig. 3, because we account for variability in the start- and end-of-season 

using the spatial average of the pixel-specific temporal standard deviation. We note 1) that the 

phenology-derived seasonal window to be used for temporal averaging deviates considerably 

from the March-September (LRLD), and October-February (SRSD) used previously in IBLI, and 

2) that the seasonal window is not uniform across the study area. For the long rains, for almost 

all units, the window falls within the LRLD definition. 𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈∗  ranges between mid-March and 

late-April (Fig. 4a), while 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗  has a greater spatial heterogeneity, i.e. from mid-June to late-

August (Fig. 4b). For the short rains, we find that 𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈∗  displays a much larger spatial variability 

ranging from mid-August in Baringo and northern Borana (i.e. before October that is defined as 

the start for SRSD) to early November in Marsabit (Fig. 4d). The 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗  of the short rains shows 

less spread, all falling between mid-January and mid-February (Fig. 4e). Following Eq. (2), we 

used the 𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈∗  and 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗  to create unit-specific series of 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠 .  

 

Although for most units the 𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈∗  and 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗  definitions span a shorter temporal averaging 

window as compared to the LRLD/SRSD definitions, 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗  can be brought further forward in 

time. Figs. 4c and 4f depict the 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗90 for the long and short rains respectively, i.e. the earliest 

10-day period when 90% of the variance in 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠  is predicted by 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈
𝑝𝑝𝑠𝑠 (with 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈

𝑝𝑝𝑠𝑠 

obtained from temporal averaging between 𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈∗  and 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗90). For the long rains, the end of the 

temporal integration period can be brought forward to as early as early- or mid-May for counties 

like Wajir, up to late-July for other areas (e.g. western Turkana, southern Garissa; Figure 4c). In 

the spatial dimension, 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗90 is strongly and positively correlated with 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗  for the long rains 

(r=0.90). The spatial relationship between 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗  and 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗90 is less strong for the short rains 

(r=0.52), probably partly due to the smaller 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗  variability as compared to that of the long 

rains. The end date of the short-rain temporal integration period can be brought forward to late-

November (parts of Isiolo and Wajir) to mid-January (e.g. southern Baringo; Figure 4f). 

 

Temporal graphs (Fig. 5) provide a better insight into local dynamics. For Central Wajir (Fig. 5a) 

the NDVI temporal profiles show clear bimodal seasonality for the median, 15th percentile, and 

three individual years. The short rains are on average the season with stronger forage 
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development, judging from the larger NDVI values. The clearly-defined dry seasons are 

excluded from the phenology-derived temporal integration period (grey bars). Particularly for the 

short rains, much of the 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠  variability can be explained long (1.5 months) before the 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗  

(black bars). Wamba (Fig. 5b) is wetter than Central Wajir (larger NDVI values) and the seasons 

when forage develops are longer. The NDVI temporal profile likewise shows clear bimodal 

seasonality, although the NDVI increase in August 2007 suggests off-season rainfall. Gomole 

(Fig. 5c) is comparable to Wamba, the main difference being the shorter dry period between the 

long and short rains, resulting in a later 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗  for the long rains, and an earlier 𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈∗  for the short 

rains. Finally, Kapedo in the southern tip of Turkana (Fig. 5d) illustrates that some units have 

complex seasonal patterns that may not be easily captured by the phenological analysis. For 

Kapedo, we found bimodal seasonality for the majority of pixels contained in the unit (50 vs 

42% for unimodal, see also Fig. 3a). While the identified seasonality seems to fit the 

intermediate year (2005), the other years do not follow this bimodal pattern. For 2011 three 

moments of green-up can be identified, the last one starting in November, i.e. in the middle of 

the phenology-derived short rainy season. On the other hand, 2009 shows a complete failure of 

the short rains, but an early green-up before the following long rains, i.e. already in December. 

The here-defined optimal temporal windows (black bars) would correctly identify the short rains 

of 2011 as a good forage season and 2009 as a poor forage season. However, offering an 

insurance contract based on these seasonal parameters would require more field research in 

places like southern Turkana and Baringo on what pastoralists see as key moments of the year 

when lack of rain and/or forage development affects their livestock. 

 

IBLI’s original forage index, using LRLD and SRSD as integration periods, can be explained to 

a varying extent by 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈
𝑝𝑝𝑠𝑠 with temporal integration from 𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈∗  to 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗90 (Fig. 6). For many 

units, the temporal variability is highly similar for both forage indices; 79% of the units for the 

long rains, and 82% for the short rains have a 𝑅𝑅𝑐𝑐𝑐𝑐2  above 0.75. Particularly for the units with the 

strongest reduction of integration times, the 𝑅𝑅𝑐𝑐𝑐𝑐2  is large (Fig. 6c). This implies that for units with 

clearly-defined seasonality, incorporation of the dry season for temporal integration adds little 

information to the forage scarcity index. In itself, this is good news for Marsabit and Wajir where 

IBLI has been active for several years, because a shift to the new integration periods proposed in 

this paper would not result in large discontinuities in expected payouts. For units where the 
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length of the new integration period is closer to the original LRLD/SRSD length, the 𝑅𝑅𝑐𝑐𝑐𝑐2  is often 

smaller, particularly for the SRSD season. For the short rains, this is particularly evident in 

locations like Baringo County and Kapedo (Fig. 5d) that have strongly deviating season 

definitions, e.g. in terms of 𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈∗ . We stress, however, that the LRLD/SRSD integration periods 

are not our optimal benchmark because, as we show, these fixed periods do not account for 

important spatial variability of seasonal parameters. Moreover the forage scarcity index should 

focus on the moment when forage actually develops. 

 

4.3 Effect of a shortened season on indemnity payouts  

Taking all insurance units and seasons together, in more than 92.5% of the cases the use of the 

shortened season (𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈
𝑝𝑝𝑠𝑠) resulted in the same binary payout decision as for the reference 

(𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠 ) for any trigger level (Fig. 7a). Small indemnity amounts are the main cause of 

disagreement given that Type I and II errors decline with increasing return periods. For example, 

for a return period of five seasons, 96.5% of binary payout decisions coincide. Excluding all 

unit-season combinations for which both index series resulted in no payment (dark grey part of 

the graph), this corresponds to 71% of all payments falling within a mere 10% payout difference, 

and less than 2.5% of all payments had over 25% difference in indemnity payout amount (Fig. 

7b). In absolute terms, this represents 17 season-unit combinations out of 756 cases in which at 

least one series triggered. Setting a longer return period as a trigger results in fewer payments, of 

which a bigger share in relative terms have a large deviation in payout amount between the 

series. The 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈
𝑝𝑝𝑠𝑠 series tend to result in larger indemnity payouts than 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠 , especially 

for larger return periods (Fig. 7b). A possible explanation could be that the shorter integration 

times of 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈
𝑝𝑝𝑠𝑠 capture less of the senescence phase, which in general shows smaller NDVI 

deviations; therefore its inclusion in  𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠  makes the z-score and hence payout amounts 

smaller.  

 

Fig. 8 provides a spatial overview of the main differences in indemnity payout decision and 

amount, based on a one-in-five season trigger and one-in-hundred season exit level. Although 

spatial differences occur, on average only 0.95 time per unit payment was triggered in either the 

𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠  or the 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈
𝑝𝑝𝑠𝑠 series, but not for both simultaneously (Fig. 8a). The largest deviation 
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occurred in Loima (Turkana), where for seven seasons the series did not coincide; we found that 

this was due to small indemnities of on average 3.7%.  

 

Rather than spatially comparing pay vs. no-pay decisions that rely only on a single threshold (i.e. 

trigger level), differences in indemnity amounts are also relevant. We mapped these using the 

mean absolute error (MAE; Fig. 8b) and the mean signed deviation (MSD; Fig. 8c) calculated 

after removing corresponding no-pay seasons for each unit. More than 76% of all units have an 

MAE less than 10%, indicating a close correspondence of payout amounts. Four of the 131 units 

(i.e. 3%) have an MAE greater than 15%, all located in Baringo. This larger MAE is likely a 

result of the more complex seasonality patterns in this region, whereby the 90%-level 

predictability of 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠  based on 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈
𝑝𝑝𝑠𝑠 did not guarantee a close match of the poor seasons 

experienced in this county. These deviations were particularly large for the 2009 long and short 

seasons when June throughout December showed very small NDVI values: the shortened season 

excluded part of the small July/August values (resulting in less negative z-scores) and partially 

excluded the out-of-season green-up the following January/February (resulting in more negative 

z-scores). This underlines the difficulty of defining good seasonal parameters in spatially and 

temporally complex areas like Baringo. The average MSD across the study area is 1.0, whereas 

none of the units have an absolute MSD greater than 8.8 (Fig. 8c). Overall, our results show that 

differences in binary payout decisions and indemnity amounts between both series are small. 

 

5 Discussion 

5.1 Defining the forage production season 

Seasonality of rainfall and vegetation growth is location-dependent. This study showed that 

while the original IBLI seasonal definitions provide a reasonable separation of the two main 

seasons for most insurance units considered, important differences exist between units. 

Moreover, IBLI originally incorporated the dry season when defining the seasonal forage 

scarcity index because forage availability during that season is important for feeding livestock. 

Nonetheless, available forage during the dry season is generally not photosynthetically-active, 

hence NDVI does not detect this. For this reason, in this study we rather focus on the period 

when forage actually develops, as defined by SOS and EOS obtained from phenological analysis. 

The availability of forage in the dry season should nonetheless be a function of forage production 
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during the preceding rainy season. Although in this study we lack multi-season field data on 

forage biomass across the large spatial extent covered, other studies have demonstrated that the 

temporal integration of vegetation indices over the growing season strongly relates to the 

vegetation’s seasonal biomass productivity (Jung et al. 2008; Rigge et al. 2013) or derivatives 

like crop yield (Funk and Budde 2009; Meroni et al. 2013). For that reason, we have a high level 

of confidence that a forage scarcity index based on seasons derived from phenological analysis 

provide a better measure of forage scarcity as compared to the former LRLD/SRSD definitions. 

 

Our study concentrated on bimodal seasonality, because of its dominance across the study area 

(Fig. 3c). For regions with unimodal rainfall, the insurance scheme may be adapted to have a 

single payout moment, and hence forage scarcity index, during the year. For example, this would 

be more suited for the pastoralist Karamoja region in north-eastern Uganda (data not shown). 

Without considering the dry regions with no seasonality, we observed complex seasonality 

patterns for Baringo and southern Turkana (Fig. 3c). Although we now forced bimodality on 

these regions, it is apparent that both the complex patterns and the interannual shifts in 

seasonality (Fig. 5d) provide a continuing challenge for effectively offering an insurance product 

that would respond to pastoralists’ needs. This was also illustrated by the relatively larger 

deviations in indemnity payout amounts in Baringo between 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠  and 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈
𝑝𝑝𝑠𝑠 series (Fig. 

8b) predominantly resulting from an abnormal NDVI temporal development in 2009. 

 

It is important to point out that despite our effective and spatially-consistent estimates of SOS 

and EOS, a small error may be introduced because the actual NDVI observation dates were not 

known (Thayn and Price 2008) and consequently we used the central date for each 10-day 

composite. For the maximum-value NDVI composites used here (Section 2), it is likely that the 

composites used on average later dates for the green-up phase and earlier dates for the 

senescence phase. Not accounting for this would on average advance the SOS, and delay EOS. 

Whereas some NDVI products (e.g. MODIS V005) contain the per-pixel observation date for 

each composite, for eMODIS this is not the case. To evaluate the potential effect of this, we also 

applied the exact methods described in Section 3.1 to 1km-resolution 10-day SPOT 

VEGETATION time series (as described in Meroni et al. 2014) for which observation dates are 

known and were used. We did indeed find that 𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈∗  was on average about 6 days earlier and 
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𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗  2 days later for eMODIS with respect to VEGETATION. The shift is within the 10-day 

sampling period and the sign of this difference is in agreement with the explanation provided 

above. We nonetheless decided to consistently use eMODIS in our study, given that it is the 

operational NDVI product now used in IBLI, and we consider the slight difference within 

acceptable limits. 

 

5.2  Operational implementation of reduced seasonal integration times 

This study showed that for most areas seasonal integration times can be substantially shortened 

as compared to the original LRLD and SRSD temporal definitions. Implementing the seasonal 

definitions (𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈∗  to 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗90) in the IBLI insurance scheme would allow payments to be made 

earlier than was previously possible and thus provide pastoralists with financial resources to 

protect their animals from loss (Zwaagstra et al. 2010); this represents a more cost-effective and 

less disruptive alternative to post-mortality replacement. We note however that for several parts 

of the study area markets to purchase key commodities, like fodder, water, and medicine, need 

further development in order to fully exploit insurance as an effective animal protection 

mechanism (Lukuyu et al. 2011).  

 

The unit-specific 𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈∗  to 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗90 found in this paper could be applied more loosely to satisfy 

other operational considerations. For example, for a single county uniform start- and end-dates 

may be chosen that roughly respect the unit-specific definitions. In fact, the here-applied 90% 

threshold on the index predictability to determine 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗90 dates is somewhat arbitrary. A slightly 

smaller threshold may still qualify as a high prediction power, and explaining more than 90% is 

obviously acceptable as well. We demonstrated that the shortened season (using 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗90 instead 

of 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗ ) resulted for most insurance units in similar payout structures with overall small MAE 

and MSD values. 

 

Early payout in case of drought conditions requires rapid calculation of the forage scarcity index 

𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈
𝑝𝑝𝑠𝑠, i.e. shortly after the NDVI composite for 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗90 becomes available. Currently, USGS 

provides eMODIS composites approximately two to three days after the end of a 10-day period. 

For example, the NDVI composite for 1-10 June will be available on 13 June. Nonetheless, 

temporal filtering of the composite is then still necessary to reduce remaining cloud 
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contamination (Section 2). Given that the used filter requires three 10-day periods before and 

after the period under consideration, an additional month of NDVI data is required. So for the 

example, the filtered NDVI composite for 1-10 June is available on 13 July. This implies that the 

final index can be obtained one month and three days after the here-reported 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗90 dates. Even 

when accounting for delays, achievable payout dates based on filtered NDVI data up to 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗90 

are for most areas still much earlier than the end dates of IBLI’s original LRLD and SRSD 

integration times.  

 

5.3 Challenges and future outlook 

Despite that large parts of the study area show clearly-separated seasons, this is not the case 

everywhere. Very arid landscapes (deserts) lack seasonality due to the small NDVI dynamic 

range (Fig. 3a), while for other areas timing of rainfall and resulting greenness varies 

substantially between years (Fig. 5d). It is yet unclear how effective an insurance scheme based 

on fixed seasonal definitions may be for such areas. Further field study is warranted to better 

understand how and when pastoralists are affected by weather and consequent forage conditions 

of key grazing areas in places like Kapedo (Turkana) and elsewhere where NDVI seasonality 

strongly varies between years. Offering an insurance product that does not respond to 

pastoralists’ expectations signifies a large risk on the sustainability of the product. 

 

An insurance scheme is only viable if it convincingly covers what it aims to cover, i.e. the 

scheme has a low basis risk (Miranda and Farrin 2012). To evaluate if low basis risk can be 

attained, possibly for a variety of alternative forage scarcity indices, validation is needed. In the 

coming years, the IBLI project intends to put substantial effort in validation and evaluation of 

alternative indices. Potential validation data sources can be split into four groups: 

1) Long-term field observations of forage availability, such as plot-level forage biomass 

measurements (e.g. Roumiguié et al. 2015), time-lapse photography of forage condition 

(Inoue et al. 2015; Migliavacca et al. 2011), or crowdsourcing approaches for the 

collection of forage condition information by pastoralists using mobile phones.  

2) Household-level time series data on drought-outcome parameters like livestock mortality 

or the mid-upper arm circumference (MUAC), which for children indicates their 

nutritional status. Such data have been collected at monthly intervals by the Kenyan 
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government from 1996 onwards in the framework of the Arid Land Resource 

Management Project (ALRMP; Chantarat et al. 2013) and currently by Kenya’s National 

Drought Monitoring Authority (NDMA).  

3) Drought recall exercises that exploit pastoralists’ experiences to rank forage conditions 

across multiple seasons.  

4) Alternative drought measurements such as long-term rainfall measurements from weather 

stations (Tapiador et al. 2012) and dendrochronological data (Gebrekirstos et al. 2014; 

Wils et al. 2011).  

 

Irrespective of validation, we can envisage further improvements of the forage scarcity index, 

which were discussed in Vrieling et al. (2014). Among them, the spatial aggregation step could 

be improved by  only incorporating pixels that constitute the key forage areas within each unit, 

rather than just discarding pixels with no-seasonality as we do currently. However, mapping 

these for large extents is not straightforward and would require pastoralists’ input or alternative 

ways to track herd movements and pastoralists’ use of their environment. Movements may also 

take place outside the spatial unit for which pastoralists purchased insurance, particularly during 

drought. Although the units used here attempt to cover the rangeland normally utilized by 

households residing in the unit (following interactions with local extension officers), rangeland 

use may be different in dry years. Nonetheless, we note that long-distance migration equally puts 

energetic demands on livestock thus negatively affecting their condition. This fact may support 

the idea that forage scarcity in the proper unit is a valid index, even if the pastoralist’s herd does 

not continuously reside in the unit. In addition, given that drought is a covariate risk, 

neighbouring units are often likewise affected. Without repeating all potential index 

enhancements described in Vrieling et al. (2014), we argue that scope exists for further 

improving the forage scarcity index and that 1) validation data, in combination with 2) improved 

understanding of pastoralists’ practices in relation to varying forage conditions are key to 

achieve that. 

 

6 Conclusions 

This study demonstrated how phenological analysis of NDVI time series can be used to obtain a 

location-specific estimate of season start- and end-dates. We showed how these seasonal 
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estimates could improve IBLI’s forage scarcity index by incorporating only NDVI data for the 

period when forage is developing, while discarding the dry season. Furthermore, we found that 

end-of-season index variability could be accurately predicted when bringing forward season end-

dates further in time. Using this shortened seasonal definition resulted in relatively small 

deviations in indemnity payout timing and amount throughout the study area. Our approach 

comprising an analysis of seasonality and index predictability could be replicated in other 

regions where index insurance programs are envisaged that aim at covering shortfalls in 

vegetation primary productivity due to drought. The earlier assessment of the seasonal forage 

scarcity index identified in this study allows for earlier payouts and hence options for pastoralists 

to protect rather than replace their livestock. In case of drought conditions, the original IBLI 

approach made payments in March for the short rains and in October for the long rains. Our 

here-recommended season parameters allow for paying out in January/February (short rains) and 

July/August (long rains). These dates are already accounting for one month needed for temporal 

filtering of the NDVI series to suppress atmospheric effects in the data. The seasonal estimates 

are location-dependent; while many spatial units show the same clearly-separated seasons every 

year, we found that other units (predominantly in Baringo and Turkana) display less-constant 

seasonality patterns. The spatial and temporal variability of NDVI seasonality in these more 

variable units poses continuing challenges for insurance design and delivery, as here we find the 

largest deviations between the original and newly-proposed forage scarcity index. 

 

Continued efforts are needed for validating the here-proposed forage scarcity index and possible 

alternatives within the study area, and in other areas where livestock and forage insurance 

programs may expand to. Such efforts require collaborative research with pastoralist groups who 

are or may become beneficiaries of these programs in a joint attempt to reduce basis risk and 

provide a well-understood valuable product that may further enhance livelihoods of pastoral 

households in regions where resource variability strongly affects food security. 
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Figures 

 

 

Fig. 1. Study area; the thin lines depict the 131 insurance units located in Kenya and Borana, 

Ethiopia. The background image shows the average NDVI (2001-2014) from 10-day eMODIS 

composites. For spatial reference, the image extends south to cover the entire Kenyan territory. 
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Fig. 2. Processing steps for obtaining the forage scarcity index.  
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Fig. 3. Pixel-based results from the phenological processing of the eMODIS NDVI series. (a) 

Seasonality based on the Lomb normalized periodogram. (b) Multi-year average SOS for long 

rains. (c) Multi-year average EOS for long rains. (d) Legend used for figures b, c, e, and f: the 

outer circle represents the first 10-day period of each month. (e) Multi-year average SOS for 

short rains. (f) Multi-year average EOS for short rains. 
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Fig. 4. Spatially-aggregated phenology and predictability results. (a) 𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈∗  for the long rains. (b) 

𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗  for the long rains. (c) 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗90 for the long rains (earliest 10-day period when 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈
𝑝𝑝𝑠𝑠 

explains at least 90% of the interannual 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠  variability). d) 𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈∗  for the short rains. (e) 

𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗  for the short rains. (f) 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗90 for the short. The legend is shown more detailed in Figure 

3d. 
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Fig. 5. Spatially-aggregated NDVI for: (a) Central Wajir – Wajir, (b) Wamba – Samburu, (c) 

Gomole – Borana (Ethiopia), and (d) Kapedo – Turkana. The multi-annual median NDVI for 

each 10-day is depicted in light green, while dark green shows the 15th percentile. Three 

individual years are overlaid; the year with the overall largest NDVI during the year (dark blue), 

a medium year (cyan), and the year with overall smallest NDVI (red). Grey bars show the 𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈∗  

to 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗  period, and black bars the 𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈∗  to 𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗90 period.  
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Fig. 6. Per-unit 𝑅𝑅𝑐𝑐𝑐𝑐2  that expresses how accurately the temporal variability of the 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈 using 

the original IBLI-definitions of LRLD (March-September) and SRSD  (October-February) can 

be predicted by 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈
𝑝𝑝𝑠𝑠; (a) for the long rains, (b) for the short rains. Panel (c) plots the ratio 

between the partial season length (𝐸𝐸𝑆𝑆𝑆𝑆𝑈𝑈∗90 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈∗ ) and the original LRLD/SRSD season length 

against the unit-specific 𝑅𝑅𝑐𝑐𝑐𝑐2 .  
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Fig. 7. Comparison of indemnity payout decisions based on 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈
𝑝𝑝𝑠𝑠 (shortened season) and 

𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠  (reference) for various trigger levels, expressed as a return period. (a) Binary payment 

decisions for all insurance units and seasons combined (N=3537); type I errors represent 

occasions where the use of 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈
𝑝𝑝𝑠𝑠 would have led to a payment and the use of 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠  not 

(type II errors vice versa). (b) Percentage difference in payout amounts between both series; only 

cases where one or both series indicated payment are considered, i.e. excluding the dark grey 

area of panel (a). Positive numbers mean that payments according to 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈
𝑝𝑝𝑠𝑠 were larger than 

those of 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠 .  
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Fig. 8. Comparison of insurance payout decisions based on 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈
𝑝𝑝𝑠𝑠  and 𝑧𝑧𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑈𝑈𝑠𝑠  (reference) 

for a trigger level of one in five seasons (z= -0.842) and an exit level of one in hundred (z=-

2.326). (a) Number of seasons with type I or type II errors (n=27). (b) Mean absolute error 

(MAE) expressed in percentage indemnity pay. (c) Corresponding mean signed deviation 

(MSD). For panel (b) and (c) all seasons when both series resulted in no-pay decisions for the 

respective unit were excluded from the calculation. 


