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Abstract

Droughts induce livestock losses that severely affect Kenyan pastoralists. Recent index
insurance schemes have the potential of being a viable tool for insuring pastoralists against
drought-related risk. Such schemes require as input a forage scarcity (or drought) index that
can be reliably updated in near real-time, and that strongly relates to livestock mortality.
Generally, a long record (>25 years) of the index is needed to correctly estimate mortality
risk and calculate the related insurance premium. Data from current operational satellites
used for large-scale vegetation monitoring span over a maximum of 15 years, a time period
that is considered insufficient for accurate premium computation. This study examines how
operational NDVI datasets compare to, and could be combined with the non-operational
recently constructed 30-year GIMMS AVHRR record (1981-2011) to provide a near-real
time drought index with a long term archive for the arid lands of Kenya. We compared six
freely available, near-real time NDVI products; five from MODIS, and one from SPOT-
VEGETATION. Prior to comparison, all datasets were averaged in time for the two
vegetative seasons in Kenya, and aggregated spatially at the administrative division level at
which the insurance is offered. The feasibility of extending the resulting aggregated drought
indices back in time was assessed using jackknifed R? statistics (leave-one-year-out) for the
overlapping period 2002-2011. We found that division-specific models were more effective
than a global model for linking the division-level temporal variability of the index between
NDVI products. Based on our results, good scope exists for historically extending the
aggregated drought index, thus providing a longer operational record for insurance purposes.
We showed that this extension may have large effects on the calculated insurance premium.

Finally, we discuss several possible improvements to the drought index.

Keywords: NDVI, AVHRR, SPOT, MODIS, index insurance, intercalibration
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1 Introduction

Coping with drought is a major challenge for pastoralists in the arid and semi-arid parts of
Kenya (Little et al., 2001; Nkedianye et al., 2011). During dry years many animals die
because of insufficient feed and water, and from drought-related epidemic diseases (Onono et
al., 2013). Such losses can have severe, long-term consequences on pastoralist households if

their herd sizes fall below specific thresholds (Barrett et al., 2006).

Insurance against the risk of livestock mortality may reduce the negative consequences of
drought-induced livestock loss, and avoid families falling into poverty (Chantarat et al.,
2013). As opposed to traditional agricultural insurance, requiring expensive verification of
individual losses by the insurer, a more cost-effective insurance approach is to base payouts
on a transparent and objectively measured variable, such as total seasonal rainfall (Barnett et
al., 2008). This is referred to as index-based insurance. Recently, index-based insurance
received much attention as it could make important contributions to agricultural growth and
reduction of poverty (Hazell and Hess, 2010; Brown et al., 2011). Despite concerns regarding
the demand for insurance by poor farmers (Binswanger-Mkhize, 2012), and challenges of
reaching sufficient scale among numerous pilot projects, the risk-management potential that
index insurance could offer poor farmers fuels continued interest and efforts to improve

product design (Barrett et al., 2007; Barnett et al., 2008).

A main limitation to index-based insurance is the possibility for households to experience a
loss, but no payment, or alternatively not experience a loss, but yet receive a payment
(Barnett et al., 2008). This is referred to as ‘basis risk’ and is caused by the imperfect
relationship between the index and incurred losses. For index-based insurance schemes to be

effective, they require an index that:
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1) strongly correlates with what is insured (such as livestock or crop losses);

2) is independently verifiable, i.e. based on well-described data sources and processing
methods;

3) can reliably be delivered into the future (at least for the duration of the insurance
contract) and is available in near real-time, so that shortly after losses are incurred,
payments can be made;

4) is available for sufficiently long records to properly represent the climatic variability
for estimating the probability of a payout (Bell et al., 2013), and thus accurately

pricing of the insurance product.

Time series of the normalized difference vegetation index (NDVI) have been used for the
purpose of index-based insurance (Turvey and McLaurin, 2012; Leblois and Quirion, 2013).
A number of near real-time composite NDVI products are freely available from sensors such
as MODIS (Moderate Resolution Imaging Spectroradiometer) and SPOT-VGT (Systeme
Pour I’Observation de la Terre - VEGETATION). These sensors offer a relatively coarse
spatial resolution (250-1000m), but provide observations of the same area on a daily basis.
This last aspect is important to reduce cloud and atmospheric effects in the composite
products, and to effectively compare vegetation conditions within and between years. Given
that droughts generate spatially-correlated covariate risks that simultaneously affect a larger
number of neighbouring households, pixel-level NDVI values are generally spatially
aggregated. In most cases this aggregation is also a necessity for modelling crop and
livestock losses, because data on production or mortality are often only available for
administrative regions. As a consequence, each administrative unit has different premium

specifications and payouts are equal for all insurance customers within a given unit.



©CO~NOOOTA~AWNPE

In the absence of reliable station rainfall data, the index-based livestock insurance (IBLI)
project in Kenya uses NDVI as a proxy for forage scarcity — a key determinant of livestock
mortality in pastoral production systems (Chantarat et al., 2013). The insurance design for the
Marsabit district of northern Kenya was extensively described by Chantarat et al. (2013).
While they used rectangular clusters, the IBLI project currently uses administrative divisions
for spatial aggregation. Since 2010, the IBLI project has operated in the Marsabit district, and
between 2013 and 2014 the project plans to expand to cover about 60 per cent of Kenya’s
land surface that constitutes its so-called arid lands. In the four years (eight seasons) during
which pastoralists in Marsabit have purchased insurance they received three times insurance
payouts following drought. For operational purposes MODIS was selected as the main data
source, following the suspension in the delivery of AVHRR (Advanced Very High
Resolution Radiometer) NDVI composites by the Famine Early Warning Systems Network
(FEWS-NET) due to the degradation of the NOAA-17 AVHRR sensor. A main drawback of
MODIS is that it covers only the years 2000 to present, hence insufficient to capture the full
range of climatic variability and the related drought probability, needed to properly price
insurance contracts. Uncertainties regarding this probability due to data restrictions would
lead insurers to add risk-loading to the premium prices, thus making the insurance more

expensive and consequently less attractive to pastoralists (Biener, 2013).

The creation of a long-term consistent NDV1 time series from multiple sources is not a trivial
task due to differences in sensor characteristics and algorithms used to generate products
(Miura et al., 2006). Differences in spectral response functions between sensors are a key
characteristic responsible for the variation in NDVI (Trishchenko et al., 2002; Trishchenko,
2009). Based on spectral convolution of hyperspectral Hyperion data, Miura et al. (2006)

reported that the NDV1 relationship among MODIS, AVHRR and ETM+ instruments is non-
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linear and largely dependent on how much the green peak (550 nm) and red edge (680-780
nm) regions are included in the red band. Despite that they find near-linear NDVI
relationships by direct comparison of AVHRR and MODIS (in correspondence to the
empirical study by Gallo et al., 2005), they indicate that higher-order polynomials may be
more accurate in modelling cross-sensor NDVI relationships. Additional factors that cause
cross-sensor variability of NDVI include atmospheric and bi-directional reflection effects,
which are also wavelength dependent (Myneni and Asrar, 1994; Sandmeier et al., 1998). This
combination of factors complicates a straightforward joining of NDV| series derived from

multiple sensors.

Many attempts have been made to construct a single long-term NDVI record from AVHRR
sensors onboard multiple satellites, which effectively corrects for effects like sensor
degradation, orbital drift, and atmospheric variability (James and Kalluri, 1994; Tucker et al.,
2005). Recently, the Global Inventory Monitoring and Modeling System (GIMMS) project
released a 30-year record of the so-called NDVI13g, i.e., third generation GIMMS NDVI from
AVHRR sensors. While effectively combining data from various AVHRR sensors already
presents a big challenge, spectral response functions are even more dissimilar in comparison
to SPOT-VGT and MODIS that have narrower spectral bands (Gao, 2000). Proposed
corrections include empirically-derived linear functions (Steven et al., 2003; Gallo et al.,
2005; Song et al., 2010) and second-order polynomial regression equations (Trishchenko et
al., 2002). Swinnen and Veroustraete (2008) found a strong linear relationship between
SPOT-VGT and 1-km? AVHRR NDVI for Southern Africa after rigorous reprocessing of
spectral reflectance data using the same atmospheric correction and compositing approaches.
They effectively accounted for differences in the dynamic range between SPOT-VGT and

AVHRR using the adjustment functions of (Trishchenko et al. (2002)). Alternatively, neural
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networks, which incorporated data layers reflecting atmospheric conditions, have been used
to account for the differences between AVHRR and MODIS (Brown et al., 2008). However,
despite various suggestions regarding the achievability of an intercalibrated, sensor-
independent NDVI record (e.g. Steven et al., 2003; Brown et al., 2006), and recent efforts
towards delivering this to the public (Pedelty et al., 2007; Gutman and Masek, 2012), no
universally-accepted multi-sensor NDVI record exists to date that both covers a long (> 25

year) time frame and is available in near real-time.

The aim of this study is to provide a pragmatic solution for combining NDVI composite
products derived from multiple sensors (i.e. AVHRR, MODIS, and SPOT-VGT) for the
purpose of the livestock insurance programme in Kenya. Rather than analysing cross-sensor
NDVI differences per pixel and composite period, we first aggregate the NDVI in space and
time to provide an appropriate index in the framework of the IBLI project. This implies
aggregation over administrative divisions and for two periods within each year,
corresponding to the two growing seasons occurring in the region. We first evaluate if a
global regression model (taking all divisions and periods together) can accurately map the
aggregated index from one NDVI1 product to another. As our overall purpose is to have a long
record that accurately displays drought-related risk for each administrative unit, which can be
updated in near real-time and serve as an input to model livestock mortality, we subsequently
perform a cross-sensor comparison at the division level, considering the two seasons together
and separately, to examine if this increasing level of disaggregation improves the
intercalibration performances with respect to the global model. Besides comparing merely
with the non-operational historic AVHRR record, we also compare operational products to
evaluate to what extent these datasets can be used interchangeably. This last issue may be

important in case of satellite sensor failure in the future. Finally we evaluate if and how the
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availability of a longer intercalibrated time series will affect the premium rate for the

livestock insurance product.

2 Study area

The study area comprises the nine counties of Kenya that are planned to be covered by the
IBLI project over the next one to two years, and are referred to by the Government of Kenya
as the arid lands (Figure 1). Since 1996, the government has collected household-level
livestock mortality data in representative locations across the study area, in the framework of

the Arid Land Resource Management Project (ALRMP, http://www.aridland.go.ke). The nine

counties together cover approximately 62 per cent of Kenya’s land area. According to Peel et
al. (2007), the area contains three Koppen-Geiger climate zones in approximately equal
amounts, i.e., tropical savannah climate (Aw), hot steppe climate (BWh), and hot desert
climate (BSh). Based on 1998-2012 data of the Tropical Rainfall Measurement Mission
(3B43 product), average annual rainfall ranges from less than 300 mm in the dry parts of
Isiolo, Marsabit, Turkana, and Wajir Counties, to more than 1,000 mm only in the south-
western part of Baringo County. Two rainfall seasons can be discerned: the so-called long
rains (March-May) and the short rains (October-December) separated by clear dry seasons.
Following Chantarat et al. (2013), we term this bi-modal seasonal pattern as Long Rains
Long Dry (LRLD) covering March to September and Short Rains Short Dry (SRSD)
covering October to February. Livestock keeping is the main rural livelihood in the region.
Livestock includes camels (in the driest parts), goats, sheep, and cattle. To standardize across
the livestock types, and to facilitate the development of a single livestock-based insurance
product, livestock numbers owned by households are expressed in Tropical Livestock Units

(TLU); 1 cattle equals 1 TLU, 1 camel is 1.4 TLU, and a goat or sheep equals 0.1 TLU.


http://www.aridland.go.ke/
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Our analysis focussed on the division-level, as this is the basic unit for which insurance
premium and payout are determined. The nine counties comprise 108 divisions. Given the
small size of some divisions and the consequent difficulty of obtaining a representative
division-level drought index, especially from the 8-km resolution AVHRR series, we set a
minimum threshold for division size. Starting from the smallest division, we iteratively
aggregated divisions smaller than 1,000 km? to the neighbouring division within the same
county that had the nearest centroid coordinates. This resulted in 84 spatial units that we
further refer to in this paper simply as divisions. The red lines in Figure 1 show the resulting

division boundaries.

3 NDVI data sets

To select potential sources of operational NDVI time series data we considered the two
following criteria: i) archive and near-real time data should be freely available, and ii) no or
minimum post processing should be required to facilitate their use by less-specialized users.
As a result, a non-exhaustive list of six operational products was compiled: five derived from
MODIS instruments onboard Terra and Aqua platforms, and one from SPOT-VGT. In
addition, the new long-term non-operational dataset derived from AVHRR (NDVI13g) was
used to create a longer historic record. The main characteristics of the products are

summarized in Table 1, and Appendix 1 provides a detailed description of each.
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4 Methods

4.1  NDVI processing

For the unfiltered datasets, i.e., GIMMS, SPOT-VGT, MODISt.nasa, and MODISa.nasA
(Table 1), we applied an iterative Savitzky-Golay filter (Savitzky and Golay, 1964) as
described by Chen et al. (2004) to reduce remaining atmospheric effects in the time series. To
do that, we first created a mask to discard any NDV| values that were cloudy or otherwise of
poor quality. For this we used the quality information delivered with the SPOT-VGT,
MODISt.nasa, and MODISa nasa data (Appendix A), while for GIMMS we masked out any
NDVI values below 0 and with an increase of more than 0.30 in 15 days. The filter was
subsequently applied using a third-order polynomial and a moving window of three
observations prior to, and after the data point to be filtered. Visual analysis of the resulting
time series showed that this procedure substantially reduced noise in the series, effectively
interpolated missing values, while retaining short-term variations that relate to real changes in

greenness.

Besides introducing the temporal filtering, we further adapted the NDVI processing sequence
from the original IBLI design (Chantarat et al., 2013) to provide improved metrics of the
season performance, which should also allow for better comparison between different
sensors. In the original design, Chantarat et al. (2013) first transformed the 10-daily NDVI
images to standard scores (or z-scores). The z-scored NDVI indicates how many standard
deviations the pixel’s NDVI is above or below the multi-annual mean pixel value of the same
10-day period (e.g., 1-10 January). They then spatially aggregated the z-scored NDVI, and
subsequently cumulated the aggregated values over time for two periods, i.e., long rains-long
dry (LRLD, March-September) and short rains-short dry (SRSD, October-February). The

idea behind aggregating z-scores of 10-day periods is that adverse forage conditions may

10
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occur at any time during the season; however, forage is not produced during the entire season
(as defined by LRLD and SRSD). A drawback of directly calculating z-scores for each time
step is that small deviations during relatively dry moments of the season can translate to large
z-scores, which get equally weighted with smaller z-scores during wet moments (that can
however represent stronger absolute deviations) when cumulating over time. To prevent this
problem and get a better measure of seasonal forage production, we first performed temporal

aggregation, then spatial aggregation, and finally z-scoring.

We performed temporal aggregation for each pixel for both LRLD and SRSD. The average
seasonal NDV1 was used for this aggregation, which is in the temporal context functionally
similar to the cumulative NDV1 value, a suitable proxy of seasonal biomass production (e.g.,
Bonifacio et al., 1993; Funk and Budde, 2009). The advantage of using the average compared
to the cumulative value is that 1) values for the two seasons of different length are in the
same units and range, and 2) it is insensitive to the different length of the compositing period
of the different NDVI products. We then spatial aggregated the temporally-averaged NDVI
by calculating the average value for each division (see section 2 on the divisions used). Given
the coarse resolution of GIMMS, for this product we calculated a weighted average that

reflects the amount of overlap a pixel has with a division.

While the z-scored values are the input for calculating insurance premiums (section 4.4), the

basis in this paper for the intercalibration between NDVI1 products are the NDVI values,

aggregated in space and time. We further refer to them as NDVI*.

4.2 Intercalibration

11
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To evaluate if different NDVI products perform similarly in identifying division-level
drought conditions, all data comparisons are based on NDVI*. For all dataset combinations,
we compared results using only the overlapping period between the seven datasets, i.e. the
period between July 2002 and December 2011. This period contains a total of 18 seasons, i.e.

9 LRLD seasons and 9 SRSD seasons.

Given the relatively small sample size available for intercalibration we limited our analysis to
the linear component of the relationship between NDVI products. Visual inspection of
scatterplots (Figure 2) and the residuals following linear regression (data not shown) suggest
a slight deviation from linearity between GIMMS-derived NDVI* and NDVI* derived from
different sensors. However, given the relatively small sample size available for
intercalibration we limited our analysis to the linear relationship between NDVI products. We
tested three calibration models that use different levels of pooling of the division-level and
season-level NDVI* data (Equations 1-3, discussed below). The aim of this was to evaluate 1)
which NDVI-products show highest correlation with the long-term GIMMS dataset, 2) which
level of pooling across season and space is most efficient in transforming NDVI* between
one source and another, 3) for which divisions/regions in Kenya the various products lead to

the same seasonal vegetation condition (and hence drought) assessment.

4.2.1 Global model (DSP)

We first assessed the performances of a global calibration model (combining all divisions and
seasons) in translating GIMMS-derived NDVI* to the NDVI* obtained from other NDVI
products, and evaluated which operational product yielded the closest agreement. We refer to
this model as the DSP-model, meaning “Divisions and Seasons Pooled”. It takes the

following form:

12
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NDVI_M’y s = Bo+ By * NDVI_ Sy s + €46 1)

where NDVI_Mg ; is the average NDVI for division d and season s for the NDVI-series that is
used as the master (or dependent variable), while NDVI_S; ; is the average NDVI for a
division that will be mapped to the master (i.e., the slave, or independent variable). For
example, to create longer time series for GIMMS that are compatible with MODIS, GIMMS
is considered the slave and MODIS the master. The parameters 3, and f3; are the regression
coefficients to be estimated and ¢ is error term. The global model is parsimonious in terms of
number of parameters to be estimated (i.e., two with a sample size of 18 seasons x 84

divisions).

4.2.2 Division-specific season-pooled model (SP)

Despite its parsimonious nature, the DSP-model may not be able to model division-level
specificities in the relationship between products. Cross-division differences may arise
because of different NDVI dynamic ranges interacting in a complex way with sensor-specific
NDVI saturation levels, different soil background affecting NDVI as a result of sensor-
specific spectral response functions, and finally, interaction of local climatology with
differences in NDVI processing chains (such as cloud screening and atmospheric correction)
affecting locally the relationship between products. These issues justify the evaluation of a
less parsimonious division-specific regression model (two parameters to be estimated with a
sample size of 18 seasons, for a total of 2x84 parameters), referred to here as SP-model
(“Season Pooled”). The SP-models can be written as:

NDVI_Mj s = foa + Bra * NDVI Sy + €4 2

13
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where the parameters 8, 4 and f5; 4 are now the division-specific regression coefficients to be

estimated.

4.2.3 Division-specific season-specific model (NP)

Finally, in order to evaluate if any season-specific effect on the relationship is present, we
also evaluated at the division level if separating the LRLD and SRSD seasons improves our
regression estimates. This is referred to here as the NP-models (for “No Pooling”) and, in
terms of number of parameters, it is the least parsimonious model considered (two parameters
to be estimated with a sample size of nine seasons, for a total of 2x2x84 parameters). The
NP-model can be expressed as:

NDVI_M} ¢ = Boas + Bras * NDVI_Sj ¢ + €45 ©)

where B 45, B1,4,s are now specific for each combination of division and season.

4.3  Performance evaluation

The increased level of specificity going from the DSP-model, via SP-, to NP-models is
achieved at the expense of a reduced sample size on which the model is calibrated, giving rise
to a trade-off between the capacity of the calibration model to take spatial heterogeneity into
account and data availability. In fact, although the performances in fitting increase by
definition when a more specific model is employed, this may not happen in prediction
because of model overparameterization. Overparameterization occurs when the amount of
information contained in the calibration data is not enough to estimate the model parameters.
The resulting model fits the calibration dataset, but produces large errors when used in
prediction. Conversely, underparameterization refers to a situation in which the available

information is not fully exploited by the restricted set of model parameters. Therefore,

14
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over/under-parameterization must be minimized to achieve the best predictive capacity. In
order to choose the best modelling solution with the data at hand, we assessed the prediction
performance of different NDVI product pairs for the different regression options using a

cross-validation jackknifing technique, where one full year of data was left out at a time.

For each jackknifed year, regression coefficients were estimated on the retained dataset and

subsequently applied to estimate NDVI_M7 ¢ of the year left apart. Performances were then

evaluated using the cross-validated R? (i.e., R2,). The RZ, measures the fraction of total
NDVI variability that is explained by the model in prediction, in all the dimensions of the
database under consideration. For example, for the global DSP-model (Equation 1) the total
variability is characterised by the spatial (division), seasonal, and interannual dimensions. As
the main objective of our intercalibration is to accurately reconstruct the interannual
variability of NDVI* at division and seasonal level, we are not interested in the ability of our
model to explain the variability in the spatial and seasonal dimensions. For the DSP-model
evaluation, we therefore compute the RZ, within division and season (R?U(Wdlws)), informing
us on the temporal prediction capability only. This can be expressed as:

[vDvS * Tt )2
_ 2iXq X3(NDVI_M; 4 —NDVI_M; 4 ;)

R

(4)

2 —
cviwd,ws) S!SRyS(NDVI_M; 4 ~NDVIMy )"
where NDVI_M; , ¢ is the NDVI_M* predicted by the model in year i, division d, and season

s, and NDVI_M ; is the average NDVI_M* over the years for division d and season s. For
clarity, in this study 1=9 years, D=84 divisions, and S=2 seasons. By using the division- and
season-specific NDVI_M* averages in the denominator of Equations 4 instead of global

average used in the standard RZ,, we measure to what extent the selected model performs

15
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better than a naive model that every year predicts a NDVI_M* that equals the multi-annual

average for each division and season.

4.4  Calculation of premium rates

To evaluate the impact of having longer NDVI* time series (following intercalibration) on
insurance pricing, we calculated premium rates using data for both the 2001-2012 period for
eMODISy as well as for the augmented period of 1981-2012 using the intercalibrated data.
We estimated the premium rate as the expected value of the insurance payout rates using the
historical distribution of z-scored NDVI* (zZNDVI*). For clarity, ZNDVI* indicates how many
standard deviations NDVI* is above or below its division- and seasonal mean value. For

illustration purposes we only present results for the SRSD season.

The insurance is structured as a simple index insurance contract that pays when livestock
mortality predicted by zZNDVI* exceeds a predefined mortality level (called strike level).
Explicitly, the payout rate (or indemnity) in any year, division, and season is calculated as

follows:

indem; 5 s = max (O,f(ZNDVIi*,d,s) —K) (5)

where f(zNDVI; ) is the response function yielding an index between 0 and 100 per cent
that represents predicted livestock mortality conditional on zNDVI;; ;, and K is the strike
level. The strike level is the value above which the contract will begin to indemnify and is
selected by the insured at the inception of the contract. In the current IBLI implementation,
the insured may select a strike level of either 10 or 15 per cent. The premium rate can then be
calculated as the average of the historical predicted indemnities provided by the application

of Equation 5 to the time series of zNDV I, ;. Currently in the IBLI project, specific response

16
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functions to predict livestock mortality from zNDVI; ; ¢ are created for each division and
season, based on collected livestock mortality data and taking into account the spatial
relationships between divisions. The precise procedure for this will be described in a
forthcoming paper by Woodard et al. (in preparation). Here, to show the impact of the longer
time series availability on the premium rates, we use a generic response function that

describes mortality as an exponential decay function of zZNDVI; ; ¢, i.e..

M = f(ZNDVIi*,d,s) — e—2.5—0.32NDVIzd,S+0.3(ZNDV]ZdJS)2 (6)

where M represents predicted livestock mortality. As we used a strike level (K) of 10 per
cent, according to Equation (5) and (6), an indemnity would be granted when zNDVI;, ¢ is
smaller than -0.45 (i.e., when NDVI is smaller than the average value minus 0.45 standard

deviations).

5 Results

5.1  Effect of division- and season-pooling on intercalibration

Table 2 presents the results for the global DSP-model that maps division- and season-level
NDVI_S* from GIMMS (slave) to NDVI_M* from any of the other NDVI products (master)
for all seasons, years, and divisions. When jointly analyzing all 84 divisions and 18 seasons,
the high R2, values (above 0.91 for all products) indicate that NDVI* from GIMMS well
correlates to that obtained from other products. When we remove the contribution related to
the model’s ability to explain the variability in the spatial and seasonal dimensions (i.e.,
Rfv(wd‘ws)), the values decrease to the range 0.622-0.672, depending on which dataset
GIMMS is mapped to (Table 2). This value expresses the average capacity of the DSP-model

to properly model the interannual variability of NDVI_M* for an individual division and

17
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season. MODISa.nasa performs best according to RZ, and R?v(wd,ws), although differences

with other products are small. MODISt.goku showed the poorest overall relation with
GIMMS in terms of the R2-measures and the RMSE,,. A possible explanation for poorer
agreement is that in this product the quality flags delivered with the original MODIS data are
not considered, because Vuolo et al. (2012) assume that poor observations have low NDVI-
values and are corrected by the filtering technique. During periods with more persistent cloud
cover, this assumption may not be correct. For MODIS+. 4 soku the non-consideration of
quality flags is less of a problem due to the higher number of good NDV I observations
available, as both the Terra and Aqua satellite are used. Figure 2 shows the corresponding
scatterplots between NDVI* from GIMMS and the other products. All regression lines are
below the 1:1 line, indicating that a negative bias exists, i.e., NDVI* from GIMMS is on
average higher than NDVI* from the other products. This data bias (Table 2) is originated by
both slope and intercept of the linear regression: in all cases slope is significantly different
from 1 and intercept from 0 (p<0.01). This bias of GIMMS is also found for Europe
(Atzberger et al., 2013). The calibration could efficiently remove the existing data bias
judging from the small model bias (bias.,) reported in Table 2. From the global DSP-model
we may conclude that NDVI* from the operational NDVI products behave similar, and all

have a strong correlation with GIMMS.

As the insurance contract is applied at the division level, we evaluated if a less parsimonious
division-specific model (Equation 2) could provide a more accurate calibration. Figure 3
shows the frequency distribution of the division-level RZ, difference between applying the
global DSP-model and the division-specific SP-models to individual divisions, in this case
for MODISa-nasa (MODISanasa IS shown here as an example, as it performed best for the

DSP-model, Table 2). For 69 of the 84 divisions, the SP-model yielded better predictive
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performances than the DSP-model, i.e. the SP-model better captures the interannual
variability of NDVI* for these divisions. Similar results were obtained for the other
operational NDVI products (Table 3). It is beyond the scope of this paper to pinpoint the
precise causes of such spatial heterogeneity in the relationship between NDVI products (see
section 4.2 for possible explanations), but this finding clearly indicates that cross-division
differences in the relationship of NDVI* are important, and consequently the intercalibration
can be achieved more accurately with a division-specific model. Despite the large reduction
in sample size (n=1,512 for DSP versus n=18 for SP), our cross-validated results show that,
on average, the more specific SP-model is not overparameterized and GIMMS NDVI* can be
more accurately mapped to NDVI* from the operational products using the SP-model, as

compared to the DSP-model.

The least parsimonious (n=9) division- and season-specific NP-model outperforms the SP-
model in more than 50 per cent of the divisions for most operational NDV1 products (Table
3). This implies the presence of a seasonal effect on the relationship of NDVI* derived from
GIMMS and operational products. This difference in performance was clustered in space,
with the SP-model performing better in areas in the west (Turkana County) and the NP-model
in eastern counties (Figure 4). The better performance of the NP-model in eastern counties
coincides with areas that have a high dynamic range of NDVI during the SRSD season, but a
lower dynamic range during the LRLD season (Figure 5). This suggests that if seasonal
NDVI characteristics strongly diverge between both seasons, season-specific (NP) models are
more effective in mapping NDVI* derived from GIMMS to NDVI* from operational
products. This could partly result from the impact of low signal-to-noise ratios on NDVI*
during relatively dry seasons. For products other than MODISa.nasa (as in the example of

Figure 4) the general pattern is the same despite some changes in the values (not shown).
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Note that on average the SP-model performs better for the SRSD as compared to the LRLD

season, possibly due to the reduced NDVI dynamic range during LRLD in many divisions.

Figure 4a suggests that for each division a different model may be selected to obtain optimal
relationships between NDVI* derived from different sources. Arguably, this may in fact be an
option for creating the long time series of drought indices for each division. Which model
should be used for each individual division would depend on the operational NDVI time
series selected (i.e. Figure 4a may deviate for other products). Here, in order to select one
single modelling solution, we pragmatically evaluated the magnitude of performance
improvement achieved increasing the specificity of the modelling solution (and thus,
reducing its parsimony). For the example of MODISa.nasa, Only for three divisions the DSP-
model’s RZ, was more than 0.10 higher than that of the SP-model; for most divisions the SP-
model performed at least similar to DSP, if not much better (Figure 3). On the contrary, when
comparing the SP- to the more specific NP-model, only 23 per cent of the divisions for
LRLD, and 6 per cent for SRSD show an improved performance by over 0.10 (AR?,,) for NP-
models. Therefore, given the relatively close similarity between NP- and SP-models
performances, we chose to confine ourselves in the further analysis to the more parsimonious
SP-model. The use of a single model-type would also imply a simpler and more consistent
solution for insurance design. At the same time, we acknowledge however that no single
models ‘wins’ across all divisions, and that the selection of different models for each division

may be a better option based on purely empirical grounds.
5.2 Comparison of NDVI products
Figure 6 shows the division-level R2, results for the SP-model for all NDVI product pairs

analysed. The first row depicts the relationship of NDVI* from GIMMS (slave) with NDVI*
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from all operational NDVI products. Although differences are small, on average for all
divisions SPOT-VGT has the highest (0.85) and MODIS+.goku the lowest RZ, (0.79). The
spatial pattern of the relationship is very similar for all NDVI products in relation to GIMMS.
RZ,,-values below 0.50 are found for all products in the driest divisions of Turkana in the
north-west. The NDVI dynamic range is extremely low in this area (Figure 5), leading to low
signal-to-noise ratios that negatively affect the relationships between products and moreover
question the usability of the uncalibrated NDVI* for insurance purposes in these regions. The
NDVI dynamic range is illustrated in Figure 7 for one poorly-performing division in Turkana
(Lokichar), and a good-performing division in Moyale (Obbu). Despite the poor
performances of some divisions, in many divisions the performance can be considered good.
For example between GIMMS and SPOT-VGT, nearly half of all divisions have an R%,,
above 0.90, and R%, above 0.80 are found in 82 per cent of the divisions (Table 4). eMODIS+t
shows similar figures, while the other MODIS products demonstrate a somewhat poorer

relationship with GIMMS.

Compared to the relationship between operational NDVI products and GIMMS, the
relationships among operational products showed a higher R2, (Figure 6). This may be
largely attributable to the closer similarity of the spectral response functions of SPOT-VGT
and MODIS. Because all MODIS products are based on the same sensor (although flown on
two satellites), it is logical that the relationship between SPOT-VGT and MODIS shows
stronger deviations as between individual MODIS products. Nonetheless, between SPOT-
VGT and eMODISr, 73 per cent of all divisions have an R%,, above 0.95, and 94 per cent
above 0.90, indicating overall good comparability of NDVI*. MODIS+.goku has the poorest
relationship with SPOT-VGT (21 and 67 per cent above R2,’s of 0.95 and 0.90,

respectively), and also with other MODIS products. The different filtering used, and the fact
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that the quality flags are not used for this product, may explain this behaviour, given that
MODISt.nasa (based on the same MOD13Q1 product) performs much better. Still we can
conclude from Figure 6 that most operational NDVI products provide comparable NDVI*
values for the majority of divisions. In an operational context of division-level drought
monitoring, this finding would allow their interchangeable use, which can be important in

case one satellite sensor fails.

While the calibration performance in terms of R2,, informs us about the overall correlation
between GIMMS and the operational products, a key interest for insurance payouts is
whether different products are capable of identifying droughts and their relative severity.
Despite relative poor calibration, it may still be possible that various NDVI products identify
droughts similarly. As an example, Figure 8 compares the time series of z-scored NDVI* of
GIMMS and three operational NDVI products for three divisions in Wajir County, each
characterized by a different quality of the calibration against GIMMS (as indicated by the
R2,,-values for the SP-model). For the Gurar-Bute division, we can observe that three major
droughts are identified by all NDVI products: in order of decreasing severity these are 2011
LRLD, 2005 LRLD, and 2010 SRSD. For Buna and Eldas (R%, for GIMMS versus SPOT-
VGT of 0.82 and 0.66) five seasons are identified as dry by all products with z-scores below -
0.5. Despite that the major drought (2011 LRLD) is equally identified by all products, the
severity ranking of these seasons differs slightly. Nonetheless, this comparison shows that
even for relatively lower RZ%,,-values, which are not very common in our analysis (Table 4),

we may attain a reasonably comparable estimate of drought occurrence.

Overall, our findings suggest that good perspectives exist for extending the operational NDVI

products back in time to create longer time series of drought indices for livestock insurance in
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Kenya. The only exceptions are the few poorly-performing divisions, notably the very arid

divisions in Turkana with low signal-to-noise ratios.

5.3  Effect on premium rates

Figure 9 shows the premium rates for the SRSD season as calculated using Equation (5) and
(6) for the period 2001-2012 from eMODISt and for the period 1981-2012 using the
intercalibrated data. The average premium rate across all divisions equals 2.54 per cent for
the period 2001-2012, and 2.95 per cent for the longer period. For individual divisions, the
premium rate estimate changes significantly when using the longer period of intercalibrated
data. For example, in the Kirisia division in the east of Samburu County, the estimated
premium rate more than doubled when using the 1981-2012 period (4.6%) as compared to
using only 2001-2012 (2.2%). Higher rates imply a higher expected livestock mortality, and
consequently a higher cost for the pastoralist to purchase the insurance (assuming equal risk-
loading by the insurer), but simultaneously this could benefit the sustainability of an
insurance scheme from the insurer’s perspective. The standard deviation of the difference
across all divisions is 1.14 per cent, which represents a significant amount of rate volatility in
insurance terms. Such volatility may be expected in a dryland pastoralist system with strong
deviations in asset losses. This example illustrates that the addition of 20 years of data has a

strong impact on the premium.

In statistical terms, the premium rates are expected to be more efficient and robust for a larger
sample size (that is more seasons), provided that the relationship between mortality and the
index is stable over time and that the intercalibration between sensors is effective. The
stronger statistical basis may motivate insurers to reduce the risk-loading (Biener, 2013),

which could partly off-set the increased premiums that were calculated based on the longer
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time period for a large number of divisions. Further study should reveal whether the premium
rates based on longer time series are also more efficient in ascertaining a sustainable
insurance scheme. In this context, sustainable implies that in the long run, the scheme is
attractive for both the insured and the insurer. In section 6 we will further discuss limitations
of long time series, and their assumed stationarity, for effectively representing livestock

mortality risks.

6 Discussion

Our study confirms that the GIMMS product is the most dissimilar among all NDV1 products
tested, a finding that can be attributed largely to the fact that the AVHRR sensor was not
designed specifically for vegetation studies and consequently has much broader spectral
bands for measuring red and NIR reflection (Trishchenko et al., 2002; Miura et al., 2006). We
did not find evidence of markedly different performance among the operational NDVI
products: pre-processing algorithms (i.e., temporal filtering) are partly responsible for
differences that did occur. Our pragmatic approach of first focussing on the relevant
aggregate drought indices (NDVI*), and subsequently comparing these across products,
provided comparable measures across different NDVI products for most divisions of arid

Kenya.

Despite the high overall RZ,, (>0.95) between GIMMS and operational products for the
global DSP-model (divisions and seasons pooled), division-specific models better predicted
the temporal variability in NDVI* of different sensors per division. This outcome is not trivial
as the more specific models are tuned on a reduced sample size (as compared to the global
DSP-model) and are thus more exposed to potential over-fitting problems. This finding is

supported by other studies that indicate location-specific dependencies on the relationship
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between NDVI derived from different sensors (e.g., Miura et al., 2006; Swinnen and
Veroustraete, 2008). Except for approximately 10 to 20 per cent of the divisions that have a
very limited NDVI dynamic range, seasons with poor vegetation characteristics (due to
drought conditions) could be properly identified by all NDV1 products using the season-
pooled division-specific SP-model. Further disaggregation achieved by the NP-model, where
the calibration is performed by each division and separately for the two seasons of interest,
yielded relatively small improvements in prediction for more than 50 per cent of the
divisions. Our results demonstrate that longer operational time series of the drought index can
effectively be constructed for most divisions by mapping NDVI* from GIMMS to that of
operational products. We fully acknowledge, however, that other approaches to achieve this
may be identified, and that further improvements can be envisaged. Here we non-

exhaustively discuss a few possible improvements or adaptations to our approach.

First, for several operational NDVI products we have more years of overlap available with
the GIMMS dataset than the 18 seasons between October 2002 and September 2011 used
here. These 18 seasons overlap between all products evaluated in our study, and were
selected to provide a fair comparison among products. However, for example for SPOT-
VGT, eight more seasons are available. Incorporating these seasons in the regression may
improve the estimation of the regression coefficients, and thus results in improved

consistency of the combined long-term time series.

Second, the observed deviation from linearity in the relationship between GIMMS and other
NDVI products may be approached using a quadratic regression (see also Miura et al., 2006)
to test the trade-off between the benefit of a potentially more appropriate model and the

drawbacks of an increased parameterization.
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Third, besides the three calibration options that we tested here (Equation 1-3), other
intermediate levels of division- and season-pooling of NDVI* can be envisaged and may have
benefits. For example, all divisions within a county could be used in a single regression
equation. Within that county, depending if the characteristics of the two seasons are very
distinct, also the seasons could be separately analysed. Another intermediate possibility
would be to use all divisions simultaneously in a fixed effects panel regression model, in
which a single slope is obtained for all divisions and different intercepts for each, thus
reducing the amount of parameters to be estimated as compared to SP-models while
increasing sample size (Baltagi, 2008). A more drastic consideration is whether we should
stick to division-boundaries, or use a better ecological stratification of the area, possibly
based on NDV1 series as well (de Bie et al., 2011). For IBLI this would not be a good option,
given that livestock mortality data are available at the division level, and divisions are for
insurers and pastoralists the most logical unit for having the same insurance premiums and
payout. Alternatively, divisions could be pooled based on ecological characteristics, for
example through similarity-based clustering of their average NDVI profiles. The main
advantage of this would be the increase of the sample size, possibly leading to more reliable
estimates of the regression coefficients, while still keeping homogeneity of insurance contract
within each division. While further empirical testing of different pooling levels could lead to
slight improvements of calibration performances, it is likely that bigger benefit can be

obtained by improving the design of the drought index itself.

Two ways to improve the drought index (currently defined as the z-score of the division

spatial average of the mean NDVI over two fixed time periods corresponding to the growing

seasons, and jointly covering a whole calendar year without gaps) can be envisaged. A first
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way would be through adapting the spatial aggregation step. Currently all pixels within a
division are incorporated when calculating NDVI*. However, many pixels may have low
signal-to-noise ratios (because vegetation is absent throughout the year, for example)
affecting the calibration reliability. In addition, these pixels may not represent locations
where livestock is actually grazing. Such pixels are less relevant concerning their effect on
livestock conditions and could be excluded 1) by setting a threshold on the pixel’s mean
NDVI and/or its temporal variability, or 2) by incorporating land cover maps such as

AfriCover (e.g., Genovese et al., 2001; Rojas et al., 2011).

A second way to enhance the performance of the drought index, both in the construction of
the long term archive and in the actual application of the index in the insurance scheme,
could be through changing the definition of the seasons under consideration. Currently, in
analogy to Chantarat et al. (2013) and the current IBLI design, the LRLD and SRSD together
cover a full year. This implies, however, that a significant proportion of each season contains
a (relatively) dry period. During this period, biomass is not developing and consequently
NDVI values provide information of limited relevance regarding grazing opportunities for
livestock. A better and more realistic tuning of the considered period is thus also expected to
increase the correlation of the index with actual livestock mortality and therefore to further
reduce the insurance basis risk. Moreover, given that exposure of bare soil impacts reflection
differently depending on the spectral response functions, low biomass conditions tend to
decrease the signal-to-noise ratio of the NDVI measurement, and as such decrease the
comparability of NDVI* across sensors. A straightforward solution could be to shorten the
seasons by removing the final one to three months of each season that is consistently
dominated by dry conditions (see also Figure 7). However, the optimal time period for

aggregation could change from division to division. A more appropriate approach could rely
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on the automated identification of start- and end-of-season from the NDVI time series at
pixel-level (Meroni et al., 2013; Vrieling et al., 2013) or aggregated per division (Rojas et al.,

2011; Vrieling et al., 2011).

This study started from the premise that longer time series can better capture the full range of
climatic variability and the related drought probability, resulting in improved pricing of
insurance contracts. This premise is based on the fact that stationarity of NDVI can be
assumed over the considered period. We should place two critical notes however. First,
human-induced land use changes within the past 30 years (e.g., Brink and Eva, 2009) may
have changed NDVI levels, which do not relate to drought. Second, if trends are present in
the NDVI data (possibly due to climatic changes), the longer record may not help to better
define drought probability for the upcoming season(s), unless the trends are accounted for.
While land use could be relatively stable, and trends may be absent for many divisions, more
detailed analysis may be needed for future use of long NDVI records in index-insurance. In
this respect, comparison with other indices could also be explored, for example using tree
ring data (Bell et al., 2013) that are now available for some parts of Africa (Gebrekirstos et

al., 2009).

This discussion contends that ample scope exists for further improving the remote sensing
component of the IBLI project. While we achieved to compare several NDVI sources, and
provided regression coefficients for creating longer time series of the NDVI* drought index,
the final usefulness of the index (as derived from different sources) can only be ascertained
when it can effectively model what is insured, i.e., livestock losses. Although drought is the
main cause of livestock mortality in arid Kenya, above-normal wet conditions may also

trigger livestock diseases such as East Coast Fever (Homewood et al., 2006), and Rift Valley
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Fever (Anyamba et al., 2009). While this is somewhat acknowledged in the current IBLI
scheme through the introduction of a quadratic term (Equation 6), better predictions of such
disease outbreaks may be possible. In this regard, NDVI series could also provide useful
information (e.g., Norval et al., 1991; Anyamba et al., 2009; Trevennec et al., 2012).
Upcoming household surveys within the IBLI project should reveal the importance of these
diseases for livestock mortality in the region, and efforts are underway within the
International Livestock Research Institute (and elsewhere) for NDV1-aided outbreak
prediction. Eventually, NDVI-derived outbreak probabilities could be incorporated in the
IBLI design to better account for increased mortality during above-normal wet conditions as

well.

7 Conclusions

Index-based livestock insurance requires an accurate estimate of livestock mortality from an
index to determine the insurance premium, and up-to-date information for determining
payouts. Given that most mortality is drought-related, spatially- and temporally-aggregated
NDVI1 is used as drought index input to livestock insurance in Kenya. With the aim of
creating a long (>30 year) operational record of division-level seasonal drought indices for
the arid lands in Kenya, we compared the non-operational 30-year GIMMS AVHRR record
with six operational NDV1 products (from MODIS and SPOT-VGT) and three modelling
options. Based on cross-validated results, we conclude that division-specific models are the
most effective in linking the division-level variability of the drought index (NDVI*) between
the various products. In relation to the long-term GIMMS record, the SP-model explained
over 80 per cent of the NDVI* variance for more than 80 per cent of all divisions for SPOT-
VGT and eMODIS+. This implies that for most divisions, good scope exists for historically

extending the aggregated drought index, thus providing a longer operational record for
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insurance purposes. Using a longer record has a significant influence on the insurance
premium rates, as shown in this paper. We defined several possible future improvements to
the drought index, which may also have a positive impact on the comparability of the

resulting drought index time series.

While our work specifically focussed on the demands of the IBLI project in Kenya, the need
for long time series of drought indices is not specific to this project. Although not always
effective or successful (Binswanger-Mkhize, 2012), index-based insurance of crop or
livestock is seen by many as having a great potential for increasing agricultural production
among smallholder farmers (Hazell and Hess, 2010; Coe and Stern, 2011), and many
initiatives and pilot projects currently exist. Despite limitations (Turvey and McLaurin,
2012), NDVI series are frequently used or considered in these projects, including for example
for livestock insurance in Mongolia (Mahul and Skees, 2007) and the ongoing project
“Evaluating remote sensing for index insurance” of the Weather Risk Management Facility
(http://www.ifad.org/ruralfinance/wrmf/). Given the need for long time series for insurance
design and pricing, our current work may further guide other index-insurance projects that

seek to combine NDV| series.
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Appendix A: Detailed description of NDVI data sets

Al GIMMS AVHRR

To obtain long time series of NDVI data, we used the 8-km resolution NDVI dataset that was
constructed by the GIMMS project. This 15-day (two maximum-value composites per month)
product covers July 1981 to December 2011. The AVHRR sensors used to construct the
dataset were flown on six satellites. The GIMMS AVHRR dataset has been corrected for
factors that do not relate to changes in vegetation greenness, and the latest version (NDV13g)
applies an improved cloud masking as compared to older versions of the GIMMS dataset

(Tucker et al., 2005; Pinzén and Tucker, 2013).

A2  SPOT-VGT

We obtained ten-daily SPOT-VGT NDVI composites (S10 product) with a 1-km spatial
resolution for 1998-present through the Flemish Institute for Technological Research (VITO).
Three composites cover exactly one month, i.e. for day 1-10, 11-20, and 21-last day of each
month. Following atmospheric correction (Rahman and Dedieu, 1994), a constrained view-
angle maximum value composite rule is applied. For Africa, the data are available in near-
real time through the VGT4Africa and GEONETCast projects (Jacobs et al., 2008). We used
the quality flags provided with the data to discard observations affected by clouds or

shadows, or that otherwise have a bad radiometric quality in the red or NIR band.

A3 MODIS
We used two series of 16-day NDVI constrained view-angle maximum value composites
from the 250-m resolution global MODIS vegetation indices product Collection 5, i.e. for

Terra (MOD13Q1) and for Aqua (MYD13Q1). Similarly to the SPOT-VGT product, the
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maximum-value compositing employed for these products selects the highest NDVI values,
but constrains the candidate pixels by the view angle (Huete et al., 2002). We refer to this
Terra-derived product here as MODISt.nyasa and the Aqua-derived product as MODISa-nasA-
Quality flags provided with the data were used to mask out unreliable observations (i.e.,

MODIS quality flag greater than 1 and usefulness flag greater than 5).

A4 MODIS — Whittaker filter

The University of Natural Resources and Applied Life Sciences (BOKU) in Vienna, Austria,
provides on-demand temporally-filtered MODIS NDVI composites, based on the Terra- and
Aqua-derived products described above (section A.3). Their service includes temporal
filtering, mosaicking, sub-setting, and reprojection, and can deliver data requests within a
day, including near-real time acquisitions (Vuolo et al., 2012). The temporal filtering is
achieved with a modified Whittaker filter (Atzberger and Eilers, 2011). This least squares
approach incorporates a ‘penalty’ criterion regarding the smoothness of the resulting NDVI
profile. Currently, MODIS quality indicators are not used to mask NDV I observations prior
to filtering, following the assumption that poor observations have low NDVI values and will
be corrected by the temporal filter (Vuolo et al., 2012). Exploiting the availability of NDVI
products from Terra and Aqua platforms (both originally composited from NASA at 16-day,
but with temporal compositing window shifted of 8 day), BOKU provides both a standard 16-
day composite based on Terra only (here referred to as MODISt.goky) and Terra plus Aqua
combined product produced every 8 days (here MODIS++a-soku). The product based on Aqua

only was not considered in this paper, but is also processed by BOKU.

A5  eMODIS
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The eMODIS data (e for ‘enhanced’, ‘expedited’, and ‘expandable’) for Africa contain 10-
day NDVI composites at 250-m resolution that are constructed using similar algorithms as
the Collection-5 MODIS products (Jenkerson et al., 2010). The United States Geological
Survey (USGS) has produced these composites since 2010 to better respond to user needs
(regarding for example projections and compositing periods). Both historical archive data and
near-real time composites are freely available online. The 10-day composites are produced
every five days resulting in six composites per month. Here we only took the composites that
cover days 1-10, 11-20, and 21-last day of each month, i.e. the same composite periods as for
SPOT-VGT. While unfiltered composites can be obtained for the full Africa window, for this
study we used the filtered eMODIS product for the East Africa window that is employed
operationally for food security monitoring activities of FEWS-NET. The temporal filtering is
based on a weighted least-squares regression approach that gives highest weights to local
peaks in the NDVI profile, and lowest weights to local valleys (Swets et al., 1999). The
filtered data are available for January 2001 until present. For clarity in this paper we add

subscript “T” (for Terra) to refer to this dataset, i.e., eMODISt.
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Table 1. Main characteristics of the NDVI products used in this study.

15

Name dataset*  Sensor Platform Data Start Resolution  Composite Temporal filtering**
18 provider (m) period
(days)

10
%I MMS AVHRR NOAA NASA 1981 8,000 15 -
(7 satellites) (-2011)
OT-VGT VEGETATION SPOT4and5 VITO 1998 1,000 10 -
ODIStnasa MODIS Terra NASA 2000 250 16 -
ODISanasA MODIS Aqua NASA 2002 250 16 -
ODISt.goku MODIS Terra BOKU 2000 250 16  Atzberger and Eilers (2011)
ODIStiaB0ku MODIS Terra+Aqua BOKU 2002 250 8 Atzberger and Eilers (2011)
ODISy MODIS Terra USGS 2001 250 10 Swets et al. (1999)

1

28 - N .
29 * The names refer to the abbreviations for the datasets used in this article

30 ** We here indicate here if the original data sources were filtered. Unfiltered datasets were smoothed by us
31 using an iterative Savitzky-Golay filter (see section 4.1).

32
33
34
35
36
37
38
ig Table 2. Statistics from the global DSP-model, where division- and season-level NDVI* from
j% GIMMS is mapped to NDVI* of each of the six datasets listed in the table. R?v(wd,ws

43

jg aggregate measure of the temporal prediction capability for each division and season (section
46

47 4.3).

48
49
50 . -
51 Name dataset R?, Rgv(w dws) RMSE,_, databias  model bias,,
52 (x1,000)
53 SPOT-VGT 0.921 0.647 0.029 -0.065 0.136

54 MODISr.nasa 0.923 0.662 0.031 -0.039 0.122

55 MODISa nasa 0.929 0.672 0.030 -0.044 0.142

56 MODIStgoku 0.917 0.622 0.033 -0.037 0.110

57 MODISta 8oku 0.924 0.652 0.031 -0.046 0.127

58 eMODISy 0.922 0.658 0.030 -0.058 0.145

59

60

61

62

63

64

65

)lsan
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Table 3. Percentage of the divisions where the division- and season-specific models (SP and

NP) outperform the pooled models (DSP and SP), respectively.

Name dataset

RZ%,(SP) > R%,(DSP)

R%,(NP) > R2,(SP)

LRLD SRSD
SPOT-VGT 88 44 51
MODIStnasa 82 61 57
MODIS A nasa 82 68 54
MODISr_goku 76 63 62
MODI ST+A-BOKU 79 61 56
eMODIS; 89 58 50

Table 4. Percentage of the divisions where RZ%, from the SP-model is higher than the

indicated thresholds.

Name dataset R?,(SP)
>0.50 >0.70 >0.80 >0.90 >0.95

SPOT-VGT 96 89 82 46 11
MODISt.nasA 95 90 77 38 6
MODISanasA 94 88 77 38 5
MODISt.goku 94 82 70 8 1
MODISt+a-Boku 95 86 77 30 4
eMODISt 95 89 81 46 11

38



OCoO~NOUITAWNE

Figures

Average ONg)Vl 14

07
0.6
05
0.4
03
02
0.1 :
0.0 1 km

4° S

Figure 1: Overview of the study area where the image shows the average NDVI from SPOT-
VGT for March 1999 until February 2013 (i.e. for 14 LRLD and 14 SRSD seasons) for
Kenya. The black polygons are the 9 Kenyan counties that were considered in this study, with
the 84 aggregated divisions (red lines). The aggregation departed from the original 108
divisions in these counties, where small divisions (<1,000 km?) within the same county were

joined.
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Figure 2: Scatterplots showing NDVI* (seasonally-averaged NDVI and aggregated per
division) derived from GIMMS (x-axis) against NDVI* from each of the other NDVI
products. Each plot contains a total of 1,512 data points (84 divisions x 9 years x 2 seasons

per year).
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Figure 3: Frequency distribution of the division-level R2,, difference between the DSP- and

SP-models. Negative values (red bars) account for 82 per cent of the divisions and indicate

that the SP-model outperforms the DSP-model. The example shown is for MODISa-nasA.
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Figure 4: Comparison of models with different levels of pooling at division level: (a)
displays the model that has the highest R2,, for each division. Note that for this the R2,, of the
DSP-model was compared with the SP-model’s R%,, and with the average R, for both
seasons (LRLD and SRSD) of the NP-model. The maps (b) and (c) show the difference in

R2, (SP-NP), separately for LRLD and SRSD. Example for MODISa nasa.
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Figure 5: The difference between the 95" and 5" percentile of 10-daily filtered NDVI from
SPOT —VGT for October 2002 — September 2011. The difference was calculated separately
for the LRLD season (a: March-September) and the SRSD season (b: October-February). The

black lines are country boundaries and grey lines are the aggregated division boundaries.
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Figure 6: Division-level R2, results between all NDV1 product pairs analysed, based on the
SP-model (Equation 2) that links division- and season-averaged NDVI (NDVI*) for the slave

dataset (rows) to that of the master dataset (columns).
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———GIMMS Obbu
=== SPOT-VGT Obbu
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Figure 7: Division-average NDVI profiles for Obbu division (Marsabit County) and

Lokichar division (Turkana County) for GIMMS and SPOT-VGT for October 2002 —

September 2011. Vertical lines indicate the start of each season (L=LRLD, S=SRSD).
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Figure 8: Comparison of z-scored NDVI* from four NDVI products for three divisions in

northern Wajir County. See Figure 1 for the location of Wajir within Kenya. The divisions

represent one with a high R2,-value (the aggregated Gurar+Bute division), a medium value

(Buna), and a low value (Eldas). The base for z-score calculation was the overlapping period

(2002 SRSD - 2011 LRLD), and calculations were performed separately for LRLD and

SRSD.
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Figure 9: The insurance premium rate (%) for the SRSD season as calculated from eMODIS+
for the period 2001-2012 (a), and using the 1981-2012 time series as obtained from the
eMODISr intercalibration with GIMMS (b). Map (c) shows the difference in premium

between both, i.e., 1981-2012 minus 2001-2012.
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Abstract

Droughts induce livestock losses that severely affect Kepgatoralists. Recent index
insurance schemes have the potential of being a viable tdaktoing pastoralists against
drought-related risk. Such schemes require as input a foragatg¢or drought) index that
can be reliably updated in near real-time, and that straetdies to livestock mortality.
Generally, a long record (>25 years) of the index is netdedrrectly estimate mortality
risk and calculate the related insurance premium. Dama éurrent operational satellites
used for large-scale vegetation monitoring span over a maxwhis years, a time period
that is considered insufficient for accurate premium comiputat his study examines how

operational NDVI datasets compare to, and could be combiitedhenon-operational

recently constructed 30-year GIMMS AVHRR record (1981-2011) to geoxinear-real
time drought index with a long term archive for the arid laofdsenya. We compared six
freely available, near-real time NDVI products; fiverfr MODIS, and one from SPOT-
VEGETATION. Prior to comparison, all datasets were ayedan time for the two
vegetative seasons in Kenya, and aggregated spatidtly atiministrative division level at
which the insurance is offered. The feasibility of extendivegresulting aggregated drought
indices back in time was assessed using jackknifestaistics (leave-one-year-out) for the
overlapping period 2002-2011. We found that division-specific modets mere effective
than a global model for linking the division-level temporal valighof the index between
NDVI products. Based on our results, good scope exists for hisipeséending the
aggregated drought index, thus providing a longer operational recargdioance purposes.
We showed that this extension may have large effects omltidated insurance premium.

Finally, we discuss several possible improvements to the drowtgx.

Keywords: NDVI, AVHRR, SPOT, MODIS, index insurance, intercaltiima
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1 I ntroduction

Coping with drought is a major challenge for pastoralisteerarid and semi-arid parts of
Kenya (Little et al., 2001; Nkedianye et al., 2011). Duringygdrars many animals die
because of insufficient feed and water, and from drought-ceéatielemic diseases (Onono et
al., 2013). Such losses can have severe, long-term consegjoanuastoralist households if

their herd sizes fall below specific thresholds (Baettl., 2006).

Insurance against the risk of livestock mortality majuce the negative consequences of
drought-induced livestock loss, and avoid families falling into ggy€hantarat et al.,
2013). As opposed to traditional agricultural insurance, requiringsigeverification of
individual losses by the insurer, a more cost-effective insarapproach is to base payouts
on a transparent and objectively measured variable, suoteseasonal rainfall (Barnett et
al., 2008). This is referred to as index-based insuran@en®g, index-based insurance
received much attention as it could make important contributioagrtoultural growth and
reduction of poverty (Hazell and Hess, 2010; Brown et al., 2@dgpite concerns regarding
the demand for insurance by poor farmers (Binswanger-Mkhize, Zii®yhallenges of
reaching sufficient scale among numerous pilot projects, tkedmagement potential that
index insurance could offer poor farmers fuels continued intarekefforts to improve

product design (Barrett et al., 2007; Barnett et al., 2008).

A main limitation to index-based insurance is the possilfititjhouseholds to experience a
loss, but no payment, or alternatively not experience a lossebrggeive a payment
(Barnett et al., 2008). This is referred to as ‘baslks @nd is caused by the imperfect
relationship between the index and incurred losses. For inded-imssgance schemes to be

effective, they require an index that:
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1) strongly correlates with what is insured (such as livestoatop losses);

2) is independently verifiable, i.e. based on well-described staiirces and processing
methods;

3) can reliably be delivered into the future (at least fordilmation of the insurance
contract) and is available in near real-time, so thatlstaiter losses are incurred,
payments can be made;

4) is available for sufficiently long records to properly représiea climatic variability

for estimating the probability of a payeuatrdthus-aceuratelypricingt-the-insurance

preduct(Bell et al., 2013) and thus accurately pricing of the insurance product.

Time series of the normalized difference vegetation irftlEXV/1) have been used for the
purpose of index-based insurance (Turvey and McLaurin, 2012; Leblo@uridn, 2013).
A number of near real-time composite NDVI products areyraehilable from sensors such
as MODIS (Moderate Resolution Imaging Spectroradiometerp®@IT-VGT (Systéme
Pour I'Observation de la Terre - VEGETATION). These sengfies a relatively coarse
spatial resolution (250-1000m), but provide observations of the semema daily basis.
This last aspect is important to reduce cloud and atmosplffectsan the composite
products, and to effectively compare vegetation conditionsméhd between years. Given
that droughts generate spatially-correlated covariate hsksimultaneously affect a larger
number of neighbouring households, pixel-level NDVI values are dgnepatially
aggregated. In most cases this aggregation is alsteasity for modelling crop and
livestock losses, because data on production or mortalityftereanly available for
administrative regions. As a consequence, each administrativeagndifferent premium

specifications and payouts are equal for all insurance custaritbiis a given unit.
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In the absence of reliable station rainfall data, the idzbesed livestock insurance (IBLI)
project in Kenya uses NDVI as a proxy for forage scarcaykey determinant of livestock
mortality in pastoral production systems (Chantarat e2@L3). The insurance design for the
Marsabit district of northern Kenya was extensively descrilye@Ghantarat et al. (2013).
While they used rectangular clusters, the IBLI project atilyaises administrative divisions
for spatial aggregation. Since 2010, the IBLI project hasabpe in the Marsabit district, and
between 2013 and 2014 the project plans to expand to cover aboutcgdpefr Kenya's

land surface that constitutes its so-called arid laindhe four years (eight seasons) during
which pastoralists in Marsabit have purchased insurancegheived three times insurance
payouts following drought. For operational purposes MODIS was selestid main data
source, following the suspension in the delivery of AVHRR (@abed Very High

Resolution Radiometer) NDVI composites by the Famine Earlgnivig Systems Network
(FEWS-NET) due to the degradation of the NOAA-17 AVHRR senSanain drawback of
MODIS is that it covers only the years 2000 to present, hiesaéicient to capture the full
range of climatic variability and the related drought proligbheeded to properly price
insurance contracts. Uncertainties regarding this probadiligyto data restrictions would
lead insurers to add risk-loading to the premium prices,rtaking the insurance more

expensive and consequently less attractive to pastor@istser, 2013).

The creation of a long-term consistent NDVI time seriesifmultiple sources is not a trivial
task due to differences in sensor characteristics aodthigs used to generate products
(Miura et al., 2006). Differences in spectral responsetime between sensors are a key
characteristic responsible for the variation in NDVI (Triséako et al., 2002; Trishchenko,
2009). Based on spectral convolution of hyperspectral HyperionMatey et al. (2006)

reported that the NDVI relationship among MODIS, AVHRR &TdV+ instruments is non-
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linear and largely dependent on how much the green peak (550dmgdaedge (680-780
nm) regions are included in the red band. Despite that iheyéar-linear NDVI
relationships by direct comparison of AVHRR and MODIS (in espondence to the
empirical study by Gallo et al., 2005), they indicate that igheer polynomials may be
more accurate in modelling cross-sensor NDVI relationshigditinal factors that cause
cross-sensor variability of NDVI include atmospheric and taalional reflection effects,
which are also wavelength dependent (Myneni and Asrar, 198dn%aer et al., 1998). This
combination of factors complicates a straightforward joining O¥Nseries derived from

multiple sensors.

Many attempts have been made to construct a single longNiBMhrecord from AVHRR
sensors onboard multiple satellites, which effectively ctsree effects like sensor
degradation, orbital drift, and atmospheric variability (JasresKalluri, 1994; Tucker et al.,
2005). Recently, the Global Inventory Monitoring and Modeling Sy¢@MS) project
released a 30-year record of the so-called NDVI3g,thi&d generation GIMMS NDVI from
AVHRR sensors. While effectively combining data from varid$1RR sensors already
presents a big challenge, spectral response functions are exedigsimilar in comparison
to SPOT-VGT and MODIS that have narrower spectral bands,(#00). Proposed
corrections include empirically-derived linear functions (Stesteal., 2003; Gallo et al.,
2005; Song et al., 2010) and second-order polynomial regression equatishehenko et
al., 2002). Swinnen and Veroustraete (2008) found a strong linaaomship between
SPOT-VGT and 1-kMAVHRR NDVI for Southern Africa after rigorous reprocessing of
spectral reflectance data using the same atmospheric cmraotl compositing approaches.
They effectively accounted for differences in the dynamicedmween SPOT-VGT and

AVHRR using the adjustment functions of (Trishchenko et al. (200&grmatively, neural
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networks, which incorporated data layers reflecting atmogpbenditions, have been used
to account for the differences between AVHRR and MODIS (Breiatl., 2008). However,
despite various suggestions regarding the achievability imtarcalibrated, sensor-
independent NDVI record (e.g. Steven et al., 2003; Brown,e2@06), and recent efforts
towards delivering this to the public (Pedelty et al., 2007; @aotand Masek, 2012), no
universally-accepted multi-sensor NDVI record exists to tteteboth covers a long (> 25

year) time frame and is available in near real-time.

The aim of this study is to provide a pragmatic solution for comgiNDVI composite
products derived from multiple sensors (i.e. AVHRR, MODIS, SROT-VGT) for the
purpose of the livestock insurance programme in Kenya. Ridienalysing cross-sensor
NDVI differences per pixel and composite period, we firstraggte the NDVI in space and
time to provide an appropriate index in the framework of thé fBoject. This implies
aggregation over administrative divisions and for two periodsnvehch year,
corresponding to the two growing seasons occurring in the régletirst evaluate if a
global regression model (taking all divisions and periods togetharaccurately map the
aggregated index from one NDVI product to another. As our overagdbparis to have a long
record that accurately displays drought-related risk for adotinistrative unit, which can be
updated in near real-time and serve as an input to modstidokemortality, we subsequently
perform a cross-sensor comparison at the division level, comgidbe two seasons together
and separately, to examine if this increasing level ofgdisation improves the

intercalibration performances with respect to the global m&#sides comparing merely

with thenon-operationalistoric AVHRR record, we also compare operational prodocts t
evaluate to what extent these datasets can be used intpgzabdy. This last issue may be

important in case of satellite sensor failure in the futtirgally we evaluate if and how the
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availability of a longer intercalibrated time seriesl affect the premium rate for the

livestock insurance product.

2 Study area

The study area comprises the nine counties of Kenya thateameepl to be covered by the
IBLI project over the next one to two years, and arerrefl to by the Government of Kenya
as the arid lands (Figure 1). Since 1996, the government hastedlhousehold-level
livestock mortality data in representative locations actbs study area, in the framework of

the Arid Land Resource Management Project (ALRKR)://www.aridland.go.Ke The nine

counties together cover approximately 62 per cent of Kenya’'salead According to Peel et
al. (2007), the area contains three Koppen-Geiger climate zoapproximately equal
amounts, i.e., tropical savannah climate (Aw), hot steppatifB\Wh), and hot desert
climate (BSh). Based on 1998-2012 data of the Tropical RaM&dkurement Mission
(3B43 product), average annual rainfall ranges from less than 80id the dry parts of
Isiolo, Marsabit, Turkana, and Wajir Counties, to more tH2@L,000mm only in the south-
western part of Baringo County. Two rainfall seasons catideerned: the so-called long
rains (March-May) and the short rains (October-Decembpgrated by clear dry seasons.
Following Chantarat et al. (2013), we term this bi-modal seagatirn as Long Rains
Long Dry (LRLD) covering March to September and Short RalmstPry (SRSD)

covering October to February. Livestock keeping is the maal livelihood in the region.
Livestock includes camels (in the driest parts), goateshand cattle. To standardize across
the livestock types, and to facilitate the developmentsifgle livestock-based insurance
product, livestock numbers owned by households are expressed in Tkdstock Units

(TLV); 1 cattle equals 1 TLU, 1 camel is 1.4 TLU, andoat or sheep equals 0.1 TLU.
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Our analysis focussed on the division-level, as this ig#ése unit for which insurance
premium and payout are determined. The nine counties comprisevi$i8rdi. Given the
small size of some divisions and the consequent difficulgbtdining a representative
division-level drought index, especially from the 8+4awolution AVHRR series, we set a
minimum threshold for division size. Starting from the spwldivision, we iteratively
aggregated divisions smaller than 1,00¢ konthe neighbouring division within the same
county that had the nearest centroid coordinates. This reguddspatial units that we
further refer to in this paper simply as divisions. The maeklin Figure 1 show the resulting

division boundaries.

3 NDVI data sets

To select potential sources of operational NDVI time seiads we considered the two
following criteria: i) archive and near-real time data shdiddreely available, and ii) no or
minimum post processing should be required to facilitate tiseiby less-specialized users.
As a result, a non-exhaustive list of six operational productsemapiled: five derived from
MODIS instruments onboard Terra and Aqua platforms, and one fRDTYGT. In
addition, the new long-term non-operational dataset derived AHRR (NDVI3g) was
used to create a longer historic record. The main chaisicteof the products are

summarized in Table 1, and Appendix 1 provides a detailedipiéscrof each.
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4 M ethods

4.1  NDVI processing

For the unfiltered datasets, i.e., GIMMS, SPOT-VGT, M&Qyasa, and MODIQ nasa

(Table 1), we applied an iterative Savitzky-Golay filteayitzky and Golay, 1964) as
described by Chen et al. (2004) to reduce remaining atmosgtieiits in the time series. To
do that, we first created a mask to discard any NDMlesthat were cloudy or otherwise of
poor quality. For this we used the quality information delivevéd the SPOT-VGT,
MODISt.nasa, and MODIS nasa data (Appendix A), while for GIMMS we masked out any
NDVI values below 0 and with an increase of more thanid.38 days. The filter was
subsequently applied using a third-order polynomial and a moving wintitwee
observations prior to, and after the data point to be filt&fsdial analysis of the resulting
time series showed that this procedure substantially rechaisel in the series, effectively
interpolated missing values, while retaining short-termatisms that relate to real changes in

greenness.

Besides introducing the temporal filtering, we further adagitedDVI processing sequence
from the original IBLI design (Chantarat et al., 2013) tovpte improved metrics of the
season performance, which should also allow for better compémetemeen different
sensors. In the original design, Chantarat et al. (2018}rfnrssformed the 10-daily NDVI
images to standard scores (or z-scores). The z-scored NBIWates how many standard
deviations the pixel’'s NDVI is above or below the multi-annuehmpixel value of the same
10-day period (e.g., 1-10 January). They then spatially aggedhe z-scored NDVI, and
subsequently cumulated the aggregated values over time fpeteals, i.e., long rains-long

dry (LRLD, March-September) and short rains-short dry (SREigber-February)he

idea behind aggregating z-scores of 10-day periods is thatsedeeage conditions may

10
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occur at any time during the season; however, forage is not produged the entire season

(as defined by LRLD and SRSDA.drawback of directly calculating z-scores for each time

step is that small deviations during relatively dry momehtbe season can translate to large
z-scores, which get equally weighted with smaller z-scdwging wet moments (that can

however represent stronger absolute deviations) when cumulatingrogei o prevent this
problem and get a better measure of seasonal forage produditirstyperformed temporal

aggregation, then spatial aggregation, and finally z-scoring.

We performed temporal aggregation for each pixel for both LRh SRSD. The average
seasonal NDVI was used for this aggregation, which isaénamporal context functionally
similar to the cumulative NDVI value, a suitable proxy cissmal biomass production (e.g.,
Bonifacio et al., 1993; Funk and Budde, 2009). The advantage ofthsimyerage compared
to the cumulative value is that 1) values for the two seasfodifferent length are in the
same units and range, and 2) it is insensitive to the differagth of the compositing period
of the different NDVI products. We then spatial aggregéiedemporally-averaged NDVI
by calculating the average value for each division (setose2 on the divisions used). Given
the coarse resolution of GIMMS, for this product we calculateeighted average that

reflects the amount of overlap a pixel has with a division.

While the z-scored values are the input for calculating inserpremiums (section 4.4), the

basis in this paper for the intercalibration between NpMducts are the NDVI values,

aggregated in space and time. We further refer to theMbD&/4*.

4.2 Intercalibration

11
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To evaluate if different NDVI products perform similarly dentifying division-level

drought conditions, all data comparisons are basédA*. For all dataset combinations,
we compared results using only the overlapping period betwesetka datasets, i.e. the
period between July 2002 and December 2011. This period coattited of 18 seasons, i.e.

9 LRLD seasons and 9 SRSD seasons.

Given the relatively small sample size available fdericalibration we limited our analysis to

the linear component of the relationship between NDVI produdssiaV/inspection of

scatterplotgprevided-ro-ndication-ef-re(Figure 2) and the residuals following linear

regression (data not shown) suggest a slight deviationlinearity betweerGIMMS-

derivedNDVI* andNDVI* derived from differentensors. However, given the relatively

small sample size available for intercalibration wet@dliour analysis to the linear

relationship between ND\froducts(Figure-2). We tested three calibration models that use

different levels of pooling of the division-level and sea®! NDVI* data (Equations 1-3,
discussed below). The aim of this was to evaluate 1) whiz¥iiNroducts show highest
correlation with the long-term GIMMS dataset, 2) whichelesf pooling across season and
space is most efficient in transformiNgVI* between one source and another, 3) for which
divisions/regions in Kenya the various products lead to the saasmnal vegetation

condition (and hence drought) assessment.

4.2.1 Global model (DSP)
We first assessed the performances of a global calibnawaiel (combining all divisions and
seasons) in translating GIMMS-derivRiiDVI* to theNDVI* obtained from other NDVI

products, and evaluated which operational product yielded thestlagreement. We refer to

12
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this model as thBSPmodel, meaning “Divisions and Seasons Pooled”. It takes the
following form:

NDVIMys=PBo+ B1*NDVI Sy, + €45 1)

whereNDVI_M;  is the averagBlDVI for divisiond and seasosfor the NDVI-series that is
used as the master (or dependent variable), WHMéI_S;  is the averagblDVI for a
division that will be mapped to the master (i.e., tlwes| or independent variable). For
example, to create longer time series for GIMMS thatampatible with MODIS, GIMMS
is considered the slave and MODIS the master. The pagesfigtandp, are the regression
coefficients to be estimated aads error term. The global model is parsimonious in terins o
number of parameters to be estimated (i.e., two with @lsasize of 18 seasons x 84

divisions).

4.2.2 Division-specific season-pooled model (SP)

Despite its parsimonious nature, D8P-model may not be able to model division-level
specificities in the relationship between products. Crosstdividifferences may arise
because of different NDVI dynamic ranges interacting in aptexnway with sensor-specific
NDVI saturation levels, different soil background affecting\N[as a result of sensor-
specific spectral response functions, and finally, intesaaif local climatology with
differences in NDVI processing chains (such as cloud sergamd atmospheric correction)
affecting locally the relationship between products. Thesegjustify the evaluation of a
less parsimonious division-specific regression model (twarmpaters to be estimated with a
sample size of 18 seasons, for a total of 2x84 parame&fesyed to here &SPmodel
(“Season Pooled”). Th8Rmodels can be written as:

NDVI_M} ¢ = Boa + Bra * NDVI_S; ¢ + €q 5 (2

13
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where the parametef ; andg, ; are now the division-specific regression coefficients to be

estimated.

4.2.3 Division-specific season-specific model (NP)

Finally, in order to evaluate if any season-specificatfée the relationship is present, we
also evaluated at the division level if separating thelLRnd SRSD seasons improves our
regression estimates. This is referred to here adRh@models (for “No Pooling”) and, in
terms of number of parameters, it is the least parsimomaulel considered (two parameters
to be estimated with a sample size of nine seasonsjdtalaf 2x2x84 parameters). The
NP-model can be expressed as:

NDVI—M;,S = ﬁo,d,s + .Bl,d,s * NDVI—S;,S + s (3)

wherefy 4 5, B1,4,s are now specific for each combination of division and season.

4.3  Performance evaluation

The increased level of specificity going from D8Rmodel, viaSP, to NP-models is
achieved at the expense of a reduced sample size on whiclodetis calibrated, giving rise
to a trade-off between the capacity of the calibrationehtmdtake spatial heterogeneity into

account and data availabilityh fact, although the performances in fitting increase by

definition when a more specific model is employed, this mayhappen in prediction

because of model overparameterization. Overparameterizagonsovhen the amount of

information contained in the calibration data is not enoughtim&® the model parameters.

The resulting model fits the calibration dataset, but prodatcgs krrors when used in

prediction. Conversely, underparameterization refers ttwat®in in which the available

14
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information is not fully exploited by the restricted set of mMadgameters. Therefore,

over/under-parameterization must be minimized to achieve Higlstlictive capacityn

order to choose the best modelling solution with the data at Wanassessed the prediction
performance of different NDVI product pairs for the differentresgion options using a

cross-validation jackknifing technique, where one full yeatath was left out at a time.

For each jackknifed year, regression coefficients wdammated on the retained dataset and
subsequently applied to estimat®VI_M7 ¢ of the year left apart. Performances were then
evaluated using the cross-validate(iR., R2,). TheR2, measures the fraction of total
NDVI variability that is explained by the model in predictiamall the dimensions of the
database under consideration. For example, for the didb@model (Equation 1) the total
variability is characterised by the spatial (division),seeal, and interannual dimensions. As
the main objective of our intercalibration is to accusatetonstruct the interannual
variability of NDVI* at division and seasonal level, we are not interestec ialility of our
model to explain the variability in the spatial and seasonatasions. For thBSRPmodel
evaluation, we therefore compute #g& within division and seasorRi,,(wdlws)), informing

us on the temporal prediction capability only. This can be equiess

IyD S * e )2
R2 —1 Yi%q Xs(NDVI_M; 4 —NDVI_M; )

cv(wd,ws) —

(4)

- IvDyS TSRO
YiYaXs (NDVI_M;" d,S—NDVI_M;‘LS)

whereNDVI_M; , ; is theNDVI_M* predicted by the model in yeardivisiond, and season
s; andVDVI_Mj ; is the averagBlDVI_M* over the years for divisiotiand seasos For
clarity, in this study 1=9 years, D=84 divisions, and S=&sses. By using the division- and
season-specifislDVI_M* averages in the denominator of Equations 4 instead of global

average used in the stand&%}, we measure to what extent the selected model performs

15
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better than a naive model that every year predibi®¥l_M* that equals the multi-annual

average for each division and season.

4.4 Calculation of premium rates

To evaluate the impact of having longéDVI* time series (following intercalibration) on
insurance pricing, we calculated premium rates using data foth®©001-2012 period for
eMODISr as well as for the augmented period of 1981-2012 using thealibeated data.

We estimated the premium rate as the expected valhe afisurance payout rates using the
historical distribution of z-scoredDVI* (zNDVI*). For clarity,zZNDVI* indicates how many
standard deviationdDVI* is above or below its division- and seasonal mean value. For

illustration purposes we only present results for the SRSDiseas

The insurance is structured as a simple index insurance ciahiaf pays when livestock
mortality predicted bgNDVI* exceeds a predefined mortality level (called strikelle
Explicitly, the payout rate (or indemnity) in any year, diefsiand season is calculated as

follows:

indem; 4 s = max (0, f(zNDVI; 4 ) — K) (5)

Wheref(zNDVIi*,d,S) is the response function yielding an index between 0 andeirOtept

that represents predicted livestock mortality conditionaBV1; ; ;, andK is the strike

level. The strike level is the value above which the cohtydl begin to indemnify and is
selected by the insured at the inception of the contrathelourrent IBLI implementation,

the insured may select a strike level of either 10 or 1&¢m@. The premium rate can then be
calculated as the average of the historical predicted indespitovided by the application

of Equation 5 to the time seriesa¥DV1;, ;. Currently in the IBLI project, specific response

16
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functions to predict livestock mortality froaNDVI; ; ; are created for each division and
season, based on collected livestock mortality data &imfytanto account the spatial
relationships between divisions. The precise procedure for thisendescribed in a
forthcoming paper by Woodard et al. (in preparation). Herghoav the impact of the longer
time series availability on the premium rates, we ugergric response function that

describes mortality as an exponential decay functiaNaéfV I}, , i.e..

M = f(ZNDVI;:d,s) — @—2.5-0.3zNDVI; 4 +0.3(zNDVI; 4)* (6)

whereM represents predicted livestock mortality. As we ussttike level ) of 10 per
cent, according to Equation (5) and (6), an indemnity would dvetgd wherxNDVI;, ; is
smaller than -0.45 (i.e., when NDVI is smaller than therage value minus 0.45 standard

deviations).

5 Results

5.1 Effect of division- and season-pooling on intercalibration

Table 2 presents the results for the gldb&Rmodel that maps division- and season-level
NDVI_S*from GIMMS (slave) taNDVI_M* from any of the other NDVI products (master)
for all seasons, years, and divisions. When jointly analyaiigg divisions and 18 seasons,
the highR?, values (above 8591 for all products) indicate th&DVI* from GIMMS well
correlatedorrelatedo that obtained from other products. When we remove theilwatibn
related to the model’s ability to explain the variahpilit the spatial and seasonal dimensions
(i.e.,R?,,(Wd,WS)), the values decrease to the rang&822-0.820672, depending on which
dataset GIMMS is mapped to (Table 2). This value expreélsses/erage capacity of the

DSPmodel to properly model the interannual variabilityN@VI_M* for an individual
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division and season. MODAswasa performs best according R¥, andRcz,,(Wd,WS), although
differences with other products are small. MOPi&S«u showed the poorest overall relation
with GIMMS in terms of thek?-measures and the RMSEA possible explanation for poorer
agreement is that in this product the quality flags dedidevith the original MODIS data are
not considered, because Vuolo et al. (2012) assume that poor tiossrirave low NDVI-
values and are corrected by the filtering techniglmmethelessDuring periods with more
persistent cloud cover, this assumption may not be corredt®DISy. p.z0ku the non-
consideration of quality flags is less of a problem dubaedigher number of good NDVI
observations available, as both the Terra and Aqua sase#itesed. Figure 2 shows the
corresponding scatterplots betwéd¢DdVI* from GIMMS and the other products. All
regression lines are below the 1:1 line, indicating thegsativenegativebias exists, i.e.,
NDVI* from GIMMS is on average higher thBiDVI* from the other products. This

pesitivedata bias (Table 2) is originated by both slope and intercelpé dihear regression:

in all cases slope is significantly different from 1 andrigget from 0 (p<0.01). Thibias of

GIMMS is also found for Europe (Atzberger et al., 2013). Thibidlon could efficiently
remove the existingatabias judging from the small model bidsds.) reported in Table 2.
From the globaDSP-model we may conclude thB&DVI* from the operational NDVI

products behave similar, and all have a strong correlationGVtMS.

As the insurance contract is applied at the division levekbwaduated if a less parsimonious
division-specific model (Equation 2) could provide a more accusdieration. Figure 3
shows the frequency distribution of the division-leRé), difference between applying the
globalDSP-model and the division-specif8Pmodels to individual divisions, in this case

for MODISa nasa- (MODISa nasa IS shown here as an example, as it performed best for the

DSP-model, Table 2)For 69 of the 84 divisions, tt#P-modelperferredyieldedbetter
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predictive performancethan theDSP-model, i.e. th&SPmodel better captures the

interannual variability oNDVI* for these divisions. Similar results were obtained for the
other operational NDVI products (Table 3). It is beyond the scofiesopaper to pinpoint
the precise causes of such spatial heterogeneity in #t@nship between NDVI products
(see section 4.2 for possible explanations), but this findiraglglendicates that cross-
division differences in the relationship NDVI* are important, andanbetterbe-accounted

forusingconsequently the intercalibration can be achieved more agluvath a division-

specific model. Despite the large reduction in sample(sizé, 512 folDSPversus n=18 for

SP), our cross-validated results show tlat averagethe more specific SP-model is not

overparameterized arGIMMS NDVI* can be more accurately mappedDVI* from the

operational products using t8&model, as compared to tB<SSP-model.

The least parsimonious (n=9) division- and season-sp&timodel outperforms th8R
model in more than 50 per cent of the divisions for most opaatNDVI products (Table 3
andrigured). This implies the presence of a seasonal effect on lddereship ofNDVI*
derived from GIMMS and operational products. This differengeeirformance was clustered
in space, with th&P-model performing better in areas in the west (Turkana Cpantythe
NP-model in eastern counties (Figus€). The better performance of thE>-model in eastern
counties coincides with areas that have a high dynamic @rigBVI during the SRSD
season, but a lower dynamic range during the LRLD season €FEiguiThis suggests that if
seasonal NDVI characteristics strongly diverge betweendszbons, season-specifith)
models are more effective in mappiN®VI* derived from GIMMS tahateNDVI* from
operational products. This could partly result from the impakivefsignal-to-noise ratios on
NDVI* during relatively dry seasons. For products other than MRS, (as in the

example of Figuré&4) the general pattern is the same despite some chantiesvalues (not
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shown). Note that on average tBBmodel performs better for the SRSD as compared to the
LRLD season, possibly due to the reduced NDVI dynamic rangegluRLD in many

divisions.

Figure5ada suggests that for each division a different model may leeted to obtain

optimal relationships betwe®DVI* derived from different sources. Arguably, this may in
fact be an option for creating the long time series of droughteador each division. Which
model should be used for each individual division would depend on #natmmal NDVI

time series selected (i.e. Figu#ala may deviate for other products). Here, in order to select
one single modelling solution, we pragmatically evaluatedriagnitude of performance
improvement achieved increasing the specificity of the niodedolution (and thus,

reducing its parsimony). For the example of MOR\&sa, only for three divisions thBSP
model’'sR%, was more than 0.10 higher than that of $femodel; for most divisions th8P
model performed at least similar@&P, if not much better (Figure 3). On the contrary, when
comparing theSR to the more specifiblP-model, only 23 per cent of the divisions for

LRLD, and 6 per cent for SRSD show an improved performancsdry0.10 4R%,) for NP-
models{see-alse-Figure-4)Therefore, given the relatively close similarity betwih and
SPmodels performances, we chose to confine ourselves in therfanalysis to the more
parsimonioussSRmodel. The use of a single model-type would also imply a singrid more
consistent solution for insurance design. At the same timeckv®aledge however that no
single models ‘wins’ across all divisions, and that the seleof different models for each

division may be a better option based on purely empirical grounds.

5.2 Comparison of NDVI products
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FigureZ6 shows the division-levet2, results for theSRmodel for all NDVI product pairs
analysed. The first row depicts the relationshiplBiVI* from GIMMS (slave) withNDVI*
from all operational NDVI products. Although differences are kroalaverage for all
divisions SPOT-VGT has the highest (0.85) and MGRUxu the lowesR%, (0.79). The
spatial pattern of the relationship is very similar foINDVI products in relation to GIMMS.
R2,-values below 0.50 are found for all products in the driessiding of Turkana in the
northeastvest The NDVI dynamic range is extremely low in this areg\(Fe65), leading to
low signal-to-noise ratios that negatively affect thatrehships between producishis and

moreover question the usability of the uncalibrad&/1* for insurance purposes in these

regions. The NDVI dynamic range illustrated in Figur&7 for one poorly-performing

division in Turkana (Lokichar), and a good-performing division in Mey@&lbbu). Despite

the poor performances of some divisions, in many divisions the penfae can be
considered good. For example between GIMMS and SPOT-VGTyredflof all divisions
have ankRZ, above 0.90, anf?Z, above 0.80 are found in 82 per cent of the divisions (Table
4). eMODIS shows similar figures, while the other MODIS products dematest

somewhat poorer relationship with GIMMS.

Compared to the relationship between operational NDVI prodadt&S#VIMS, the
relationships among operational products showed a hRfhefFigure76). This may be
largelyattributedhttributableto the closer similarity of the spectral response funcibns
SPOT-VGT and MODIS. Because all MODIS products are basegessaime sensor
(although flown on two satellites), it is logical that te&tionship between SPOT-VGT and
MODIS shows stronger deviations as between individual MODIS ptedNonetheless,
between SPOT-VGT and eMODIS73 per cent of all divisions have BA, above 0.95, and

94 per cent above 0.90, indicating overall good comparabillyf1*. MODISr.goku has
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the poorest relationship with SPOT-VGT (21 and 67 per cent abgye of 0.95 and 0.90,
respectively), and also with other MODIS products. The wiffefiltering used, and the fact
that the quality flags are not used for this product, may extiies behaviour, given that
MODIStnasa (based on the same MOD13Q1 product) performs much betteweStan
conclude from Figur&6 that most operational NDVI products provide compar&tid/I*
values for the majority of divisions. In an operational contéxtivision-level drought
monitoring, this finding would allow their interchangeable use, whan be important in

case one satellite sensor fails.

While the calibration performance in termsR3, informs us about the overall correlation
between GIMMS and the operational products, a key interestdorance payouts is
whether different products are capable of identifying droughtsteaidrelative severity.
Despite relative poor calibration, it may still be possthb various NDVI products identify
droughts similarly. As an example, Fig@&compares the time series of z-scoxdaVI* of
GIMMS and three operational NDVI products for three divisions ifivZaunty, each
characterized by a different quality of the calibration agam®MS (as indicated by the
R2,-values for theSP-model). For the Gurar-Bute division, we can observe thag timaor
droughts are identified by all NDVI products: in order of desirgaseverity these are 2011
LRLD, 2005 LRLD, and 2010 SRSD. For Buna and Eld¥s, for GIMMS versus SPOT-
VGT of 0.82 and 0.66) five seasons are identified as dryllpr@ducts with z-scores below -
0.5. Despite that the major drought (2011 LRLD) is equally idedtiby all products, the
severity ranking of these seasons differs slightly. Nonethelleis comparison shows that
even for relatively loweR2,-values, which are not very common in our analysis (Table 4),

we may attain a reasonably comparable estimate of drougintrence.

22



O©CO~NOOOTA~AWNPE

Overall, our findings suggest that good perspectives exisixtending the operational NDVI
products back in time to create longer time series of drougltesdor livestock insurance in
Kenya. The only exceptions are the few poorly-performing idngs notably the very arid

divisions in Turkana with low signal-to-noise ratios.

5.3 Effect on premium rates

Figure109 shows the premium rates for the SRSD season as calcusatgdEquation (5)
and (6) for the period 2001-2012 from eMOBRESd for the period 1981-2012 using the
intercalibrated data. The average premium rate acrodwigllons equals 2.54 per cent for
the period 2001-2012, and 2.95 per cent for the longer period. Feidimali divisions, the
premium rate estimate changes significantly when usinfptiger period of intercalibrated
data. For example, in the Kirisia division in the eassafmburu County, the estimated
premium rate more than doubled when using the 1981-2012 period (4.6&6hpared to
using only 2001-2012 (2.2%). Higher rates imply a higher expeetestdck mortality, and
consequently a higher cost for the pastoralist to purchasesimance (assuming equal risk-
loading by the insurer), but simultaneously this could benefit thaisability of an
insurance scheme from the insurer’s perspective. The stashelgedion of the difference
across all divisions is 1.14 per cent, which representsdisant amount of rate volatility in
insurance terms. Such volatility may be expected in a drydastbralist system with strong
deviations in asset losses. This example illustrates thatdtiition of 20 years of data has a

strong impact on the premium.

In statistical terms, the premium rates are expectéd toore efficient and robust for a larger

sample size (that is more seasons), provided that the relafidretween mortality and the

index is stable over time and that the intercalibration betweasors is effective. The
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stronger statistical basis may motivate insurers to reithecask-loading (Biener, 2013),
which could partly off-set the increased premiums thaewafculated based on the longer
time period for a large number of divisions. Further study shewell whether the premium
rates based on longer time series are also more effiniastertaining a sustainable
insurance scheme. In this context, sustainable impliesthia¢ long run, the scheme is
attractive for both the insured and the insurer. In sectwea @ill further discuss limitations
of long time series, and their assumed stationarity, fectfely representing livestock

mortality risks.

6 Discussion

Our study confirms that the GIMMS product is the most disaimaiimong all NDVI products
tested, a finding that can be attributed largely to tbetFat the AVHRR sensor was not
designed specifically for vegetation studies and consequertinmbheh broader spectral
bands for measuring red and NIR reflection (Trishchenko,e2@02; Miura et al., 2006). We
did not find evidence of markedly different performance amongpeeational NDVI
products: pre-processing algorithms (i.e., temporal filteringpartly responsible for
differences that did occur. Our pragmatic approach offbgissing on the relevant
aggregate drought indiceNDVI*), and subsequently comparing these across products,
provided comparable measures across different NDVI products &irdivisions of arid

Kenya.

Despite the high overali, (>0.95) between GIMMS and operational products for the
globalDSP-model (divisions and seasons pooled), division-specific models pettdicted

the temporal variability iNDVI* of different sensors per divisiohhis outcome is not trivial

as the more specific models are tuned on a reduced samml@sicompared to the global
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DSPmodel) and are thus more exposed to potential over-fitting problssfinding is
supported by other studies that indicate location-specific deperdencthe relationship
between NDVI derived from different sensors (e.g., Miural.e 2006; Swinnen and
Veroustraete, 2008). Except for approximately 10 to 20 per ceéiné afivisions that have a
very limited NDVI dynamic range, seasons with poor vegatatharacteristics (due to
drought conditions) could be properly identified by all NDVI productagitiie season-
pooled division-specifiSPmodel. Further disaggregation achieved byNRemodel, where
the calibration is performed by each division and separatelpdamto seasons of interest,

yielded relatively small improvements prediction for more than 50 per cent of the

divisions.Our results demonstrate that longer operational time s#riee drought index can
effectively be constructed for most divisions by mappiiyV1* from GIMMS to that of
operational products. We fully acknowledge, however, that other aghg®#0 achieve this
may be identified, and that further improvements can be ayetis Here we non-

exhaustively discuss a few possible improvements or adaptations &pproach.

First, for several operational NDVI products we have moresyafoverlap available with
the GIMMS dataset than the 18 seasons between October 2008mechSer 2011 used
here. These 18 seasons overlap between all products evatuatedtudy, and were
selected to provide a fair comparison among products. Howevexxdmple for SPOT-
VGT, eight more seasons are available. Incorporating thesersem the regression may
improve the estimation of the regression coefficients,tans results in improved

consistency of the combined long-term time series.

Second, the observed deviation from linearity in the reldtiprsetween GIMMS and other

NDVI products may be approached using a quadratic regrgseeralso Miura et al.,
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2006)5econdo test the trade-off between the benefit of a potentiatiye appropriate model

and the drawbacks of an increased parameterization.

Third, besides the three calibration options that we tested hguatign 1-3), other
intermediate levels of division- and season-poolinP#¥I* can be envisaged and may have
benefits. For example, all divisions within a county could be irsadsingle regression
equation. Within that county, depending if the characterisfitBe two seasons are very
distinct, also the seasons could be separately analysed. Amiénerediate possibility

would be to use all divisions simultaneously in a fixed effectslpageession model, in
which a single slope is obtained for all divisions and differaetrcepts for each, thus
reducing the amount of parameters to be estimated as chtp&P-models while

increasing sample size (Baltagi, 2008). A more drastic ceragidn is whether we should
stick to division-boundaries, or use a better ecologicalfstedion of the area, possibly
based on NDVI series as well (de Bie et al., 2011). Fbr il&is would not be a good option,
given that livestock mortality data are available atdivésion level, and divisions are for
insurers and pastoralists the most logical unit for havingdh® insurance premiums and
payout. Alternatively, divisions could be pooled based on ecologieaacteristics, for
example through similarity-based clustering of their averdg¥INrofiles. The main
advantage of this would be the increase of the sample sizehlgdsading to more reliable
estimates of the regression coefficients, while still keggpiomogeneity of insurance contract
within each division. While further empirical testing of di#nt pooling levels could lead to
slight improvements of calibration performances, it is jikbhat bigger benefit can be

obtained by improving the design of the drought index itself.
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Two ways to improve the drought index (currently defined ag-#wore of the division
spatial average of the mean NDVI over two fixed timeqgaks corresponding to the growing
seasons, and jointly covering a whole calendar year with@s) gan be envisaged. A first
way would be through adapting the spatial aggregation steper@iyrall pixels within a
division are incorporated when calculatiN®VI*. However, many pixels may have low
signal-to-noise ratios (because vegetation is absent throughgahdor example)
affecting the calibration reliability. In addition, thesegdsxmay not represent locations
where livestock is actually grazing. Such pixels ase lelevant concerning their effect on
livestock conditions and could be excluded 1) by setting a threshole: guixel’'s mean
NDVI and/or its temporal variability, or 2) by incorporating lasaver maps such as

AfriCover (e.g., Genovese et al., 2001; Rojas et al., 2011).

A second way to enhance the performance of the drought indexnlibhconstruction of
the long term archive and in the actual application of the imdéhei insurance scheme,
could be through changing the definition of the seasons under catisideCurrently, in
analogy to Chantarat et al. (2013) and the current IBLI dethign,RLD and SRSD together
cover a full year. This implies, however, that a sigafficproportion of each season contains
a (relatively) dry period. During this period, biomass isdeeloping and consequently
NDVI values provide information of limited relevance regardingzing opportunities for
livestock. A better and more realistic tuning of the coneid@eriod is thus also expected to
increase the correlation of the index with actual livestooktality and therefore to further
reduce the insurance basis risk. Moreover, given that expokbage soil impacts reflection
differently depending on the spectral response functions, low bgouaditions tend to
decrease the signal-to-noise ratio of the NDVI measureraedtas such decrease the

comparability ofNDVI* across sensors. A straightforward solution could be to shiwten t
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seasons by removing the final one to three months of each shas@consistently
dominated by dry conditions (see also Figgirfg However, the optimal time period for
aggregation could change from division to division. A more ap@tepapproach could rely

on the automated identification of start- and end-of-seasontfrerNDVI time series at

pixel-level (Meroni et al., 2013; Vrieling et al., 201k8)aggregted-perdivisiofRojas-et-al.,
2011 Vrieling-etal—201) or aggregated per division (Rojas et al., 204rieling et al.,
2011).

This study started from the premise that longer time seaiedetter capture the full range of
climatic variability and the related drought probability, raaglin improved pricing of
insurance contracts. This premise is based on the fadt#t@inarity of NDVI can be
assumed over the considered period. We should place twealcnibtes however. First,
human-induced land use changes within the past 30 years {ng.aBd Eva, 2009) may
have changed NDVI levels, which do not relate to drought. Seddnehds are present in
the NDVI data (possibly due to climatic changes), the longgwrd may not help to better
define drought probability for the upcoming season(s), unless tidstege accounted for.
While land use could be relatively stable, and trends majpbent for many divisions, more
detailed analysis may be needed for future use of long N&3drds in index-insurance. In
this respect, comparison with other indices could also be expforeskample using tree
ring data (Bell et al., 2013) that are now available foresparts of Africa (Gebrekirstos et

al., 2009).

This discussion contends that ample scope exists for furtheovingrthe remote sensing

component of the IBLI project. While we achieved to compavers¢ NDVI sources, and

provided regression coefficients for creating longer time sefidg®eNDVI* drought index,
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the final usefulness of the index (as derived from differeatces) can only be ascertained
when it can effectively model what is insured, i.e., liwek losses. Although drought is the
main cause of livestock mortality in arid Kenya, abovesrawet conditions may also
trigger livestock diseases such as East Coast Hdeendwood et al., 2006), and Rift Valley
Fever (Anyamba et al., 2009). While this is somewhat acknowteigthe current IBLI
scheme through the introduction of a quadratic term (Equatidre®gr predictions of such
disease outbreaks may be possible. In this regard, ND\éisseould also provide useful
information (e.g., Norval et al., 1991; Anyamba et al., 2008ydnnec et al., 2012).
Upcoming household surveys within the IBLI project should reveahtbertance of these
diseases for livestock mortality in the region, and edfare underway within the
International Livestock Research Institute (and elsewtieréyDVI-aided outbreak
prediction. Eventually, NDVI-derived outbreak probabilities cowddrizorporated in the
IBLI design to better account for increased mortality during ebwrmal wet conditions as

well.

7 Conclusions

Index-based livestock insurance requires an accurate esbimatestock mortality from an
index to determine the insurance premium, and up-to-date iafamrfor determining
payouts. Given that most mortality is drought-related, spatiaiig temporally-aggregated
NDVI is used as drought index input to livestock insurance in KW the aim of
creating a long (>30 year) operational record of division-legakonal drought indices for
the arid lands in Kenya, we compared the non-operational 303}»MS AVHRR record
with six operational NDVI products (from MODIS and SPOT-V@Ghy three modelling
options. Based on cross-validated results, we conclude thsibdispecific models are the

most effective in linking the division-level variability tife drought indexNDVI*) between
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the various products. In relation to the long-term GIMMS reécthreSP-model explained

over 80 per cent of thidDVI* variance for more than 80 per cent of all divisions for SPOT-
VGT and eMODIS. This implies that for most divisions, good scepésexistsfor

historically extending the aggregated drought index, thus providioggel operational
record for insurance purposes. Using a longer record has a signifitaence on the
insurance premium rates, as shown in this paper. We detrnedss possible future
improvements to the drought index, which may also have a poitpact on the

comparability of the resulting drought index time series.

While our work specifically focussed on the demands of the [Baject in Kenya, the need
for long time series of drought indices is not specific topghigect. Although not always
effective or successful (Binswanger-Mkhize, 2012), index-bamsentance of crop or
livestock is seen by many as having a great potentiahfoeasing agricultural production
among smallholder farmers (Hazell and Hess, 2010; Coe and 3dd1), and many
initiatives and pilot projects currently exist. Despite tations (Turvey and McLaurin,
2012), NDVI series are frequently used or considered in regects, including for example
for livestock insurance in Mongolia (Mahul and Skees, 2007)@dngoing project
“Evaluating remote sensing for index insurance” of the We&isk Management Facility
(http://www.ifad.org/ruralfinance/wrmf/). Given the neexd fong time series for insurance
design and pricing, our current work may further guide other inaEx-@nce projects that

seek to combine NDV!I series.
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Appendix A: Detailed description of NDVI data sets

Al GIMMS AVHRR

To obtain long time series of NDVI data, we used the 8-kmlugen NDVI dataset that was
constructed by the GIMMS project. This 15-day (two maximum-veamposites per month)
product covers July 1981 to December 2011. The AVHRR sensorsouseasstruct the
dataset were flown on six satellites. The GIMMS AVHRRadet has been corrected for
factors that do not relate to changes in vegetation greeramest)e latest version (NDVI3Q)
applies an improved cloud masking as compared to older versitims GIMMS dataset

(Tucker et al., 2005; Pinzén and Tucker, 2013).

A.2  SPOT-VGT

We obtained ten-daily SPOT-VGT NDVI composites (S10 produith) av1-km spatial
resolution for 1998-present through the Flemish Institute for Techiwaldgesearch (VITO).
Three composites cover exactly one month, i.e. for day 14t@0, and 21-last day of each
month. Following atmospheric correction (Rahman and Dedieu, 1892)nstrained view-
angle maximum value composite rule is applied. For Africad#ta are available in near-
real time through the VGT4Africa and GEONETCast projecsdbs et al., 2008). We used
the quality flags provided with the data to discard observattiasted by clouds or

shadows, or that otherwise have a bad radiometric qualityeired or NIR band.

A.3 MODIS
We used two series of 16-day NDVI constrained view-angigimmum value composites
from the 250-m resolution global MODIS vegetation indices produde€uain 5, i.e. for

Terra (MOD13Q1) and for Aqua (MYD13Q1). Similarly to the SP@&T product, the
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maximum-value compositing employed for these products selectsghest NDVI values,
but constrains the candidate pixels by the view angle (Huele 2002). We refer to this
Terra-derived product here as MOBIasa and the Aqua-derived product as MORKasa.
Quality flags provided with the data were used to mask out ahlelobservations (i.e.,

MODIS quality flag greater than 1 and usefulness flag gréhan 5).

A.4  MODIS — Whittaker filter

The University of Natural Resources and Applied Life ScierfB®©KU) in Vienna, Austria,
provides on-demand temporally-filtered MODIS NDVI compositesed on the Terra- and
FerraplusAqua-derived products described above (se@m18). Their service includes
temporal filtering, mosaicking, sub-setting, and reprojecaon, can deliver data requests
within a day, including near-real time acquisitions (Vuolole2®12). The temporal filtering
is achieved with a modified Whittaker filter (Atzbergerd Eilers, 2011). This least squares
approach incorporates a ‘penalty’ criterion regarding the smodtinfidise resulting NDVI
profile. Currently, MODIS quality indicators are not used taknldDVI observations prior
to filtering, following the assumption that poor observations haveNBw1 values and will
be corrected by the temporal filter (Vuolo et al., 2012). Exiplpithe availability of NDVI
products from Terra and Aqua platforms (both originally compositad MASA at 16-day,
but with temporal compositing window shifted of 8 day), BOKU prosideth a standard 16-
day composite based on Terra only (here referred to as M@BiS) and Terra plus Aqua

combined product produced every 8 days (here M@RIs»ku). The product based on Aqua

only was not considered in this paper, but is also procéssBOKU.

A5 eMODIS
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The eMODIS datag(for ‘enhanced’, ‘expedited’, and ‘expandable’) for Africa contldA

day NDVI composites at 250-m resolution that are constructiedy similar algorithms as
the Collection-5 MODIS products (Jenkerson et al., 2010). Thed)Sitates Geological
Survey (USGS) has produced these composites since 2010 tadsitend to user needs
(regarding for example projections and compositing periods). Bsthritial archive data and
near-real time composites are freely available online. Thda¥@omposites are produced
every five days resulting in six composites per month. Herenly took the composites that
cover days 1-10, 11-20, and 21-last day of each month, i.eathe composite periods as for
SPOT-VGT. While unfiltered composites can be obtainedh@ifull Africa window, for this
study we used the filtered eMODIS product for the East Afsicelow that is employed
operationally for food security monitoring activities of FEWSINEhe temporal filtering is
based on a weighted least-squares regression approach ésahigivest weights to local
peaks in the NDVI profile, and lowest weights to localexdl (Swets et al., 1999). The
filtered data are available for January 2001 until preg@mtclarity in this paper we add

subscript “T” (for Terra) to refer to this dataset, ieMODIS.
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Tables

Table 1. Main characteristics of thdDVI products used in this study.

Name dataset*  Sensor Platform Data Start Resolution Composite Temporal filtering**

provider (m) period

(days)
GIMMS AVHRR NOAA NASA 1981 8,000 15 -
(7 satellites) (-2011)
SPOT-VGT VEGETATION SPOT4and5 VITO 1998 1,000 10
MODISt.nasa MODIS Terra NASA 2000 250 16 -
MODISa.nasa MODIS Aqua NASA 200z 25C 16 -
MODIS+.goku MODIS Terre BOKU 200C 25C 16 Atzberger and Eilers (20)
MODIStia80ky  MODIS Terra+Aqua BOKU 2002 250 8 Atzberger ancil(2011)
eMODIS; MODIS Terra USGS 2001 250 10 Swets et al. (1999)
*Note:

* The names refer to the abbreviations for the detgagsed in this article
** \We here indicate here if the original data soascwere filtered. Unfiltered datasets were smootheds

using an iterative Savitzky-Golay filter (see sat#l.1).

Table 2. Statistics from the glob&SRPmodel, where division- and season-leM&VI* from

GIMMS is mapped toNDVI* of each of the six datasets listed in the té‘@??(-wa,ws) IS an

aggregate measure of the temporal prediction capabilityafidr division and season (section

4.3).
Name dataset R? R? RMSE,,, databias model bias,
cv cv(wd,ws) (x1,000)
SPOT-VGT 0.921 0.647 0.029 -0.065 0.136
MODISt.nasa 0.923 0.662 0.031 -0.03¢ 0.122
MODIS, nasa 0.929 0.672 0.03( -0.04¢ 0.14:
MODISt soku 0.917 0.622 0.033 -0.037 0.110
MODISr+a-soku 0.924 0.652 0.031 -0.046 0.127
eMODIS; 0.922 0.658 0.030 -0.058 0.145
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Table 3. Percentage of the divisions where fsled-meodelsBSPandSP-outperform-the

division- and season-specific mode&P@ndNP) outperform the pooled model®$P and

SB), respectively.

Name dataset R?%,(SP) > R%,(DSP) RZ%,(NP) > R?,(SP)
LRLD SRSD
SPOWVGT 88 44 51
MODISr.nasa 82 61 57
MODISa nasa 82 68 54
MODIStgoku 76 63 62
MODISr:a-80kU 79 61 56
eMODIS; 89 58 50

Table 4. Percentage of the divisions wheké, from the SPmodel {taking-GIMMS-as-the

i is higher than the indicated thresholds.

Name dataset R?,(SP)

>0.50 >0.70 >0.80 >0.90 >0.95
SPOT-VGT 96 89 82 46 11
MODISr.nasa 95 90 77 38 6
MODISp.nasA 94 88 77 38 5
MODISt.goku 94 82 7C 8 1
MODISr+a-Boku 95 86 77 30 4
eMODIS; 95 89 81 46 11
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