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Abstract 

Droughts induce livestock losses that severely affect Kenyan pastoralists. Recent index 

insurance schemes have the potential of being a viable tool for insuring pastoralists against 

drought-related risk. Such schemes require as input a forage scarcity (or drought) index that 

can be reliably updated in near real-time, and that strongly relates to livestock mortality. 

Generally, a long record (>25 years) of the index is needed to correctly estimate mortality 

risk and calculate the related insurance premium. Data from current operational satellites 

used for large-scale vegetation monitoring span over a maximum of 15 years, a time period 

that is considered insufficient for accurate premium computation. This study examines how 

operational NDVI datasets compare to, and could be combined with the non-operational 

recently constructed 30-year GIMMS AVHRR record (1981-2011) to provide a near-real 

time drought index with a long term archive for the arid lands of Kenya. We compared six 

freely available, near-real time NDVI products; five from MODIS, and one from SPOT-

VEGETATION. Prior to comparison, all datasets were averaged in time for the two 

vegetative seasons in Kenya, and aggregated spatially at the administrative division level at 

which the insurance is offered. The feasibility of extending the resulting aggregated drought 

indices back in time was assessed using jackknifed R
2
 statistics (leave-one-year-out) for the 

overlapping period 2002-2011. We found that division-specific models were more effective 

than a global model for linking the division-level temporal variability of the index between 

NDVI products. Based on our results, good scope exists for historically extending the 

aggregated drought index, thus providing a longer operational record for insurance purposes. 

We showed that this extension may have large effects on the calculated insurance premium. 

Finally, we discuss several possible improvements to the drought index.  

 

Keywords:  NDVI, AVHRR, SPOT, MODIS, index insurance, intercalibration 
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1 Introduction 

Coping with drought is a major challenge for pastoralists in the arid and semi-arid parts of 

Kenya (Little et al., 2001; Nkedianye et al., 2011). During dry years many animals die 

because of insufficient feed and water, and from drought-related epidemic diseases (Onono et 

al., 2013). Such losses can have severe, long-term consequences on pastoralist households if 

their herd sizes fall below specific thresholds (Barrett et al., 2006).  

 

Insurance against the risk of livestock mortality may reduce the negative consequences of 

drought-induced  livestock loss, and avoid families falling into poverty (Chantarat et al., 

2013). As opposed to traditional agricultural insurance, requiring expensive verification of 

individual losses by the insurer, a more cost-effective insurance approach is to base payouts 

on a transparent and objectively measured variable, such as total seasonal rainfall (Barnett et 

al., 2008). This is referred to as index-based insurance. Recently, index-based insurance 

received much attention as it could make important contributions to agricultural growth and 

reduction of poverty (Hazell and Hess, 2010; Brown et al., 2011). Despite concerns regarding 

the demand for insurance by poor farmers (Binswanger-Mkhize, 2012), and challenges of 

reaching sufficient scale among numerous pilot projects, the risk-management potential that 

index insurance could offer poor farmers fuels continued interest and efforts to improve 

product design (Barrett et al., 2007; Barnett et al., 2008).  

 

A main limitation to index-based insurance is the possibility for households to experience a 

loss, but no payment, or alternatively not experience a loss, but yet receive a payment 

(Barnett et al., 2008). This is referred to as „basis risk‟ and is caused by the imperfect 

relationship between the index and incurred losses. For index-based insurance schemes to be 

effective, they require an index that: 
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1) strongly correlates with what is insured (such as livestock or crop losses);  

2) is independently verifiable, i.e. based on well-described data sources and processing 

methods; 

3) can reliably be delivered into the future (at least for the duration of the insurance 

contract) and is available in near real-time, so that shortly after losses are incurred, 

payments can be made; 

4) is available for sufficiently long records to properly represent the climatic variability 

for estimating the probability of a payout (Bell et al., 2013), and thus accurately 

pricing of the insurance product. 

 

Time series of the normalized difference vegetation index (NDVI) have been used for the 

purpose of index-based insurance (Turvey and McLaurin, 2012; Leblois and Quirion, 2013). 

A number of near real-time composite NDVI products are freely available from sensors such 

as MODIS (Moderate Resolution Imaging Spectroradiometer) and SPOT-VGT (Système 

Pour l‟Observation de la Terre - VEGETATION). These sensors offer a relatively coarse 

spatial resolution (250-1000m), but provide observations of the same area on a daily basis. 

This last aspect is important to reduce cloud and atmospheric effects in the composite 

products, and to effectively compare vegetation conditions within and between years. Given 

that droughts generate spatially-correlated covariate risks that simultaneously affect a larger 

number of neighbouring households, pixel-level NDVI values are generally spatially 

aggregated. In most cases this aggregation is also a necessity for modelling crop and 

livestock losses, because data on production or mortality are often only available for 

administrative regions. As a consequence, each administrative unit has different premium 

specifications and payouts are equal for all insurance customers within a given unit. 
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In the absence of reliable station rainfall data, the index-based livestock insurance (IBLI) 

project in Kenya uses NDVI as a proxy for forage scarcity – a key determinant of livestock 

mortality in pastoral production systems (Chantarat et al., 2013). The insurance design for the 

Marsabit district of northern Kenya was extensively described by Chantarat et al. (2013). 

While they used rectangular clusters, the IBLI project currently uses administrative divisions 

for spatial aggregation. Since 2010, the IBLI project has operated in the Marsabit district, and 

between 2013 and 2014 the project plans to expand to cover about 60 per cent of Kenya‟s 

land surface that constitutes its so-called arid lands. In the four years (eight seasons) during 

which pastoralists in Marsabit have purchased insurance they received three times insurance 

payouts following drought. For operational purposes MODIS was selected as the main data 

source, following the suspension in the delivery of AVHRR (Advanced Very High 

Resolution Radiometer) NDVI composites by the Famine Early Warning Systems Network 

(FEWS-NET) due to the degradation of the NOAA-17 AVHRR sensor. A main drawback of 

MODIS is that it covers only the years 2000 to present, hence insufficient to capture the full 

range of climatic variability and the related drought probability, needed to properly price 

insurance contracts. Uncertainties regarding this probability due to data restrictions would 

lead insurers to add risk-loading to the premium prices, thus making the insurance more 

expensive and consequently less attractive to pastoralists (Biener, 2013). 

 

The creation of a long-term consistent NDVI time series from multiple sources is not a trivial 

task due to differences in sensor characteristics and algorithms used to generate products 

(Miura et al., 2006). Differences in spectral response functions between sensors are a key 

characteristic responsible for the variation in NDVI (Trishchenko et al., 2002; Trishchenko, 

2009). Based on spectral convolution of hyperspectral Hyperion data, Miura et al. (2006) 

reported that the NDVI relationship among MODIS, AVHRR and ETM+ instruments is non-
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linear and largely dependent on how much the green peak (550 nm) and red edge (680-780 

nm) regions are included in the red band. Despite that they find near-linear NDVI 

relationships by direct comparison of AVHRR and MODIS (in correspondence to the 

empirical study by Gallo et al., 2005), they indicate that higher-order polynomials may be 

more accurate in modelling cross-sensor NDVI relationships. Additional factors that cause 

cross-sensor variability of NDVI include atmospheric and bi-directional reflection effects, 

which are also wavelength dependent (Myneni and Asrar, 1994; Sandmeier et al., 1998). This 

combination of factors complicates a straightforward joining of NDVI series derived from 

multiple sensors.  

 

Many attempts have been made to construct a single long-term NDVI record from AVHRR 

sensors onboard multiple satellites, which effectively corrects for effects like sensor 

degradation, orbital drift, and atmospheric variability (James and Kalluri, 1994; Tucker et al., 

2005). Recently, the Global Inventory Monitoring and Modeling System (GIMMS) project 

released a 30-year record of the so-called NDVI3g, i.e., third generation GIMMS NDVI from 

AVHRR sensors. While effectively combining data from various AVHRR sensors already 

presents a big challenge, spectral response functions are even more dissimilar in comparison 

to SPOT-VGT and MODIS that have narrower spectral bands (Gao, 2000). Proposed 

corrections include empirically-derived linear functions (Steven et al., 2003; Gallo et al., 

2005; Song et al., 2010) and second-order polynomial regression equations (Trishchenko et 

al., 2002). Swinnen and Veroustraete (2008) found a strong linear relationship between 

SPOT-VGT and 1-km
2
 AVHRR NDVI for Southern Africa after rigorous reprocessing of 

spectral reflectance data using the same atmospheric correction and compositing approaches. 

They effectively accounted for differences in the dynamic range between SPOT-VGT and 

AVHRR using the adjustment functions of (Trishchenko et al. (2002)). Alternatively, neural 
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networks, which incorporated data layers reflecting atmospheric conditions, have been used 

to account for the differences between AVHRR and MODIS (Brown et al., 2008). However, 

despite various suggestions regarding the achievability of an intercalibrated, sensor-

independent NDVI record (e.g. Steven et al., 2003; Brown et al., 2006), and recent efforts 

towards delivering this to the public (Pedelty et al., 2007; Gutman and Masek, 2012), no 

universally-accepted multi-sensor NDVI record exists to date that both covers a long (> 25 

year) time frame and is available in near real-time. 

 

The aim of this study is to provide a pragmatic solution for combining NDVI composite 

products derived from multiple sensors (i.e. AVHRR, MODIS, and SPOT-VGT) for the 

purpose of the livestock insurance programme in Kenya. Rather than analysing cross-sensor 

NDVI differences per pixel and composite period, we first aggregate the NDVI in space and 

time to provide an appropriate index in the framework of the IBLI project. This implies 

aggregation over administrative divisions and for two periods within each year, 

corresponding to the two growing seasons occurring in the region. We first evaluate if a 

global regression model (taking all divisions and periods together) can accurately map the 

aggregated index from one NDVI product to another. As our overall purpose is to have a long 

record that accurately displays drought-related risk for each administrative unit, which can be 

updated in near real-time and serve as an input to model livestock mortality, we subsequently 

perform a cross-sensor comparison at the division level, considering the two seasons together 

and separately, to examine if this increasing level of disaggregation improves the 

intercalibration performances with respect to the global model. Besides comparing merely 

with the non-operational historic AVHRR record, we also compare operational products to 

evaluate to what extent these datasets can be used interchangeably. This last issue may be 

important in case of satellite sensor failure in the future. Finally we evaluate if and how the 
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availability of a longer intercalibrated time series will affect the premium rate for the 

livestock insurance product. 

 

 

2 Study area 

The study area comprises the nine counties of Kenya that are planned to be covered by the 

IBLI project over the next one to two years, and are referred to by the Government of Kenya 

as the arid lands (Figure 1). Since 1996, the government has collected household-level 

livestock mortality data in representative locations across the study area, in the framework of 

the Arid Land Resource Management Project (ALRMP, http://www.aridland.go.ke). The nine 

counties together cover approximately 62 per cent of Kenya‟s land area. According to Peel et 

al. (2007), the area contains three Köppen-Geiger climate zones in approximately equal 

amounts, i.e., tropical savannah climate (Aw), hot steppe climate (BWh), and hot desert 

climate (BSh). Based on 1998-2012 data of the Tropical Rainfall Measurement Mission 

(3B43 product), average annual rainfall ranges from less than 300 mm in the dry parts of 

Isiolo, Marsabit, Turkana, and Wajir Counties, to more than 1,000 mm only in the south-

western part of Baringo County. Two rainfall seasons can be discerned: the so-called long 

rains (March-May) and the short rains (October-December) separated by clear dry seasons. 

Following Chantarat et al. (2013), we term this bi-modal seasonal pattern as Long Rains 

Long Dry (LRLD) covering March to September and Short Rains Short Dry (SRSD) 

covering October to February. Livestock keeping is the main rural livelihood in the region. 

Livestock includes camels (in the driest parts), goats, sheep, and cattle. To standardize across 

the livestock types, and to facilitate the development of a single livestock-based insurance 

product, livestock numbers owned by households are expressed in Tropical Livestock Units 

(TLU); 1 cattle equals 1 TLU, 1 camel is 1.4 TLU, and a goat or sheep equals 0.1 TLU. 

http://www.aridland.go.ke/
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Our analysis focussed on the division-level, as this is the basic unit for which insurance 

premium and payout are determined. The nine counties comprise 108 divisions. Given the 

small size of some divisions and the consequent difficulty of obtaining a representative 

division-level drought index, especially from the 8-km
 
resolution AVHRR series, we set a 

minimum threshold for division size. Starting from the smallest division, we iteratively 

aggregated divisions smaller than 1,000 km
2
 to the neighbouring division within the same 

county that had the nearest centroid coordinates. This resulted in 84 spatial units that we 

further refer to in this paper simply as divisions. The red lines in Figure 1 show the resulting 

division boundaries. 

 

 

 

3 NDVI data sets 

To select potential sources of operational NDVI time series data we considered the two 

following criteria: i) archive and near-real time data should be freely available, and ii) no or 

minimum post processing should be required to facilitate their use by less-specialized users. 

As a result, a non-exhaustive list of six operational products was compiled: five derived from 

MODIS instruments onboard Terra and Aqua platforms, and one from SPOT-VGT. In 

addition, the new long-term non-operational dataset derived from AVHRR (NDVI3g) was 

used to create a longer historic record. The main characteristics of the products are 

summarized in Table 1, and Appendix 1 provides a detailed description of each. 
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4 Methods 

4.1 NDVI processing 

For the unfiltered datasets, i.e., GIMMS, SPOT-VGT, MODIST-NASA, and MODISA-NASA 

(Table 1), we applied an iterative Savitzky-Golay filter (Savitzky and Golay, 1964) as 

described by Chen et al. (2004) to reduce remaining atmospheric effects in the time series. To 

do that, we first created a mask to discard any NDVI values that were cloudy or otherwise of 

poor quality. For this we used the quality information delivered with the SPOT-VGT, 

MODIST-NASA, and MODISA-NASA data (Appendix A), while for GIMMS we masked out any 

NDVI values below 0 and with an increase of more than 0.30 in 15 days. The filter was 

subsequently applied using a third-order polynomial and a moving window of three 

observations prior to, and after the data point to be filtered. Visual analysis of the resulting 

time series showed that this procedure substantially reduced noise in the series, effectively 

interpolated missing values, while retaining short-term variations that relate to real changes in 

greenness. 

 

Besides introducing the temporal filtering, we further adapted the NDVI processing sequence 

from the original IBLI design (Chantarat et al., 2013) to provide improved metrics of the 

season performance, which should also allow for better comparison between different 

sensors. In the original design, Chantarat et al. (2013) first transformed the 10-daily NDVI 

images to standard scores (or z-scores). The z-scored NDVI indicates how many standard 

deviations the pixel‟s NDVI is above or below the multi-annual mean pixel value of the same 

10-day period (e.g., 1-10 January). They then spatially aggregated the z-scored NDVI, and 

subsequently cumulated the aggregated values over time for two periods, i.e., long rains-long 

dry (LRLD, March-September) and short rains-short dry (SRSD, October-February). The 

idea behind aggregating z-scores of 10-day periods is that adverse forage conditions may 
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occur at any time during the season; however, forage is not produced during the entire season 

(as defined by LRLD and SRSD). A drawback of directly calculating z-scores for each time 

step is that small deviations during relatively dry moments of the season can translate to large 

z-scores, which get equally weighted with smaller z-scores during wet moments (that can 

however represent stronger absolute deviations) when cumulating over time. To prevent this 

problem and get a better measure of seasonal forage production, we first performed temporal 

aggregation, then spatial aggregation, and finally z-scoring. 

 

We performed temporal aggregation for each pixel for both LRLD and SRSD. The average 

seasonal NDVI was used for this aggregation, which is in the temporal context functionally 

similar to the cumulative NDVI value, a suitable proxy of seasonal biomass production (e.g., 

Bonifacio et al., 1993; Funk and Budde, 2009). The advantage of using the average compared 

to the cumulative value is that 1) values for the two seasons of different length are in the 

same units and range, and 2) it is insensitive to the different length of the compositing period 

of the different NDVI products. We then spatial aggregated the temporally-averaged NDVI 

by calculating the average value for each division (see section 2 on the divisions used). Given 

the coarse resolution of GIMMS, for this product we calculated a weighted average that 

reflects the amount of overlap a pixel has with a division. 

 

While the z-scored values are the input for calculating insurance premiums (section 4.4), the 

basis in this paper for the intercalibration between NDVI products are the NDVI values, 

aggregated in space and time. We further refer to them as NDVI*.
 

 

4.2 Intercalibration 
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To evaluate if different NDVI products perform similarly in identifying division-level 

drought conditions, all data comparisons are based on NDVI*. For all dataset combinations, 

we compared results using only the overlapping period between the seven datasets, i.e. the 

period between July 2002 and December 2011. This period contains a total of 18 seasons, i.e. 

9 LRLD seasons and 9 SRSD seasons. 

  

Given the relatively small sample size available for intercalibration we limited our analysis to 

the linear component of the relationship between NDVI products. Visual inspection of 

scatterplots (Figure 2) and the residuals following linear regression (data not shown) suggest 

a slight deviation from linearity between GIMMS-derived NDVI* and NDVI* derived from 

different sensors. However, given the relatively small sample size available for 

intercalibration we limited our analysis to the linear relationship between NDVI products. We 

tested three calibration models that use different levels of pooling of the division-level and 

season-level NDVI* data (Equations 1-3, discussed below). The aim of this was to evaluate 1) 

which NDVI-products show highest correlation with the long-term GIMMS dataset, 2) which 

level of pooling across season and space is most efficient in transforming NDVI* between 

one source and another, 3) for which divisions/regions in Kenya the various products lead to 

the same seasonal vegetation condition (and hence drought) assessment. 

 

4.2.1 Global model (DSP) 

We first assessed the performances of a global calibration model (combining all divisions and 

seasons) in translating GIMMS-derived NDVI* to the NDVI* obtained from other NDVI 

products, and evaluated which operational product yielded the closest agreement. We refer to 

this model as the DSP-model, meaning “Divisions and Seasons Pooled”. It takes the 

following form: 
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                       (1) 

 

where          
  is the average NDVI for division d and season s for the NDVI-series that is 

used as the master (or dependent variable), while          
  is the average NDVI for a 

division that will be mapped to the master (i.e., the slave, or independent variable). For 

example, to create longer time series for GIMMS that are compatible with MODIS, GIMMS 

is considered the slave and MODIS the master. The parameters    and    are the regression 

coefficients to be estimated and   is error term. The global model is parsimonious in terms of 

number of parameters to be estimated (i.e., two with a sample size of 18 seasons x 84 

divisions). 

 

4.2.2 Division-specific season-pooled model (SP) 

Despite its parsimonious nature, the DSP-model may not be able to model division-level 

specificities in the relationship between products. Cross-division differences may arise 

because of different NDVI dynamic ranges interacting in a complex way with sensor-specific 

NDVI saturation levels, different soil background affecting NDVI as a result of sensor-

specific spectral response functions, and finally, interaction of local climatology with 

differences in NDVI processing chains (such as cloud screening and atmospheric correction) 

affecting locally the relationship between products. These issues justify the evaluation of a 

less parsimonious division-specific regression model (two parameters to be estimated with a 

sample size of 18 seasons, for a total of 2x84 parameters), referred to here as SP-model 

(“Season Pooled”). The SP-models can be written as: 

         
                      

                       (2) 
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where the parameters      and      are now the division-specific regression coefficients to be 

estimated.  

 

4.2.3 Division-specific season-specific model (NP) 

Finally, in order to evaluate if any season-specific effect on the relationship is present, we 

also evaluated at the division level if separating the LRLD and SRSD seasons improves our 

regression estimates. This is referred to here as the NP-models (for “No Pooling”) and, in 

terms of number of parameters, it is the least parsimonious model considered (two parameters 

to be estimated with a sample size of nine seasons, for a total of 2x2x84 parameters). The 

NP-model can be expressed as: 

         
                         

                      (3) 

 

where       ,        are now specific for each combination of division and season. 

 

4.3 Performance evaluation 

The increased level of specificity going from the DSP-model, via SP-, to NP-models is 

achieved at the expense of a reduced sample size on which the model is calibrated, giving rise 

to a trade-off  between the capacity of the calibration model to take spatial heterogeneity into 

account and data availability. In fact, although the performances in fitting increase by 

definition when a more specific model is employed, this may not happen in prediction 

because of model overparameterization. Overparameterization occurs when the amount of 

information contained in the calibration data is not enough to estimate the model parameters. 

The resulting model fits the calibration dataset, but produces large errors when used in 

prediction. Conversely, underparameterization refers to a situation in which the available 

information is not fully exploited by the restricted set of model parameters. Therefore, 
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over/under-parameterization must be minimized to achieve the best predictive capacity. In 

order to choose the best modelling solution with the data at hand, we assessed the prediction 

performance of different NDVI product pairs for the different regression options using a 

cross-validation jackknifing technique, where one full year of data was left out at a time. 

 

For each jackknifed year, regression coefficients were estimated on the retained dataset and 

subsequently applied to estimate           
  of the year left apart. Performances were then 

evaluated using the cross-validated R
2
 (i.e.,    

 ). The    
  measures the fraction of total 

NDVI variability that is explained by the model in prediction, in all the dimensions of the 

database under consideration. For example, for the global DSP-model (Equation 1) the total 

variability is characterised by the spatial (division), seasonal, and interannual dimensions. As 

the main objective of our intercalibration is to accurately reconstruct the interannual 

variability of NDVI* at division and seasonal level, we are not interested in the ability of our 

model to explain the variability in the spatial and seasonal dimensions. For the DSP-model 

evaluation, we therefore compute the    
  within division and season (          

 ), informing 

us on the temporal prediction capability only. This can be expressed as: 

            
    

               
             

   
  

 
 
 

 
 

               
           

                 
  

 
 
 

 
 

        (4) 

 

where            
   is the NDVI_M* predicted by the model in year i, division d, and season 

s; and          
                is the average NDVI_M* over the years for division d and season s. For 

clarity, in this study I=9 years, D=84 divisions, and S=2 seasons. By using the division- and 

season-specific NDVI_M* averages in the denominator of Equations 4 instead of global 

average used in the standard    
 , we measure to what extent the selected model performs 
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better than a naïve model that every year predicts a NDVI_M* that equals the multi-annual 

average for each division and season. 

 

4.4 Calculation of premium rates 

To evaluate the impact of having longer NDVI* time series (following intercalibration) on 

insurance pricing, we calculated premium rates using data for both the 2001-2012 period for 

eMODIST as well as for the augmented period of 1981-2012 using the intercalibrated data.  

We estimated the premium rate as the expected value of the insurance payout rates using the 

historical distribution of z-scored NDVI* (zNDVI*). For clarity, zNDVI* indicates how many 

standard deviations NDVI* is above or below its division- and seasonal mean value. For 

illustration purposes we only present results for the SRSD season. 

 

The insurance is structured as a simple index insurance contract that pays when livestock 

mortality predicted by zNDVI* exceeds a predefined mortality level (called strike level). 

Explicitly, the payout rate (or indemnity) in any year, division, and season is calculated as 

follows: 

                              
          (5) 

 

where             
   is the response function yielding an index between 0 and 100 per cent 

that represents predicted livestock mortality conditional on           
 , and   is the strike 

level. The strike level is the value above which the contract will begin to indemnify and is 

selected by the insured at the inception of the contract. In the current IBLI implementation, 

the insured may select a strike level of either 10 or 15 per cent. The premium rate can then be 

calculated as the average of the historical predicted indemnities provided by the application 

of Equation 5 to the time series of           
 . Currently in the IBLI project, specific response 
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functions to predict livestock mortality from           
  are created for each division and 

season, based on collected livestock mortality data and taking into account the spatial 

relationships between divisions. The precise procedure for this will be described in a 

forthcoming paper by Woodard et al. (in preparation). Here, to show the impact of the longer 

time series availability on the premium rates, we use a generic response function that 

describes mortality as an exponential decay function of           
 , i.e.: 

              
                      

                
      (6) 

 

where   represents predicted livestock mortality. As we used a strike level ( ) of 10 per 

cent, according to Equation (5) and (6), an indemnity would be granted when           
  is 

smaller than -0.45 (i.e., when NDVI is smaller than the average value minus 0.45 standard 

deviations). 

 

 

5 Results 

5.1 Effect of division- and season-pooling on intercalibration 

Table 2 presents the results for the global DSP-model that maps division- and season-level 

NDVI_S* from GIMMS (slave) to NDVI_M* from any of the other NDVI products (master) 

for all seasons, years, and divisions. When jointly analyzing all 84 divisions and 18 seasons, 

the high    
  values (above 0.91 for all products) indicate that NDVI* from GIMMS well 

correlates to that obtained from other products. When we remove the contribution related to 

the model‟s ability to explain the variability in the spatial and seasonal dimensions (i.e., 

          
 ), the values decrease to the range 0.622-0.672, depending on which dataset 

GIMMS is mapped to (Table 2). This value expresses the average capacity of the DSP-model 

to properly model the interannual variability of NDVI_M* for an individual division and 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 18 

season. MODISA-NASA performs best according to    
  and           

 , although differences 

with other products are small. MODIST-BOKU showed the poorest overall relation with 

GIMMS in terms of the   -measures and the RMSEcv. A possible explanation for poorer 

agreement is that in this product the quality flags delivered with the original MODIS data are 

not considered, because Vuolo et al. (2012) assume that poor observations have low NDVI-

values and are corrected by the filtering technique. During periods with more persistent cloud 

cover, this assumption may not be correct. For MODIST+A-BOKU the non-consideration of 

quality flags is less of a problem due to the higher number of good NDVI observations 

available, as both the Terra and Aqua satellite are used. Figure 2 shows the corresponding 

scatterplots between NDVI* from GIMMS and the other products. All regression lines are 

below the 1:1 line, indicating that a negative bias exists, i.e., NDVI* from GIMMS is on 

average higher than NDVI* from the other products. This data bias (Table 2) is originated by 

both slope and intercept of the linear regression: in all cases slope is significantly different 

from 1 and intercept from 0 (p<0.01). This bias of GIMMS is also found for Europe 

(Atzberger et al., 2013). The calibration could efficiently remove the existing data bias 

judging from the small model bias (biascv) reported in Table 2. From the global DSP-model 

we may conclude that NDVI* from the operational NDVI products behave similar, and all 

have a strong correlation with GIMMS. 

 

As the insurance contract is applied at the division level, we evaluated if a less parsimonious 

division-specific model (Equation 2) could provide a more accurate calibration. Figure 3 

shows the frequency distribution of the division-level     
  difference between applying the 

global DSP-model and the division-specific SP-models to individual divisions, in this case 

for MODISA-NASA (MODISA-NASA is shown here as an example, as it performed best for the 

DSP-model, Table 2). For 69 of the 84 divisions, the SP-model yielded better predictive 
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performances than the DSP-model, i.e. the SP-model better captures the interannual 

variability of NDVI* for these divisions. Similar results were obtained for the other 

operational NDVI products (Table 3). It is beyond the scope of this paper to pinpoint the 

precise causes of such spatial heterogeneity in the relationship between NDVI products (see 

section 4.2 for possible explanations), but this finding clearly indicates that cross-division 

differences in the relationship of NDVI* are important, and consequently the intercalibration 

can be achieved more accurately with a division-specific model. Despite the large reduction 

in sample size (n=1,512 for DSP versus n=18 for SP), our cross-validated results show that, 

on average, the more specific SP-model is not overparameterized and GIMMS NDVI* can be 

more accurately mapped to NDVI* from the operational products using the SP-model, as 

compared to the DSP-model. 

 

The least parsimonious (n=9) division- and season-specific NP-model outperforms the SP-

model in more than 50 per cent of the divisions for most operational NDVI products (Table 

3). This implies the presence of a seasonal effect on the relationship of NDVI* derived from 

GIMMS and operational products. This difference in performance was clustered in space, 

with the SP-model performing better in areas in the west (Turkana County) and the NP-model 

in eastern counties (Figure 4). The better performance of the NP-model in eastern counties 

coincides with areas that have a high dynamic range of NDVI during the SRSD season, but a 

lower dynamic range during the LRLD season (Figure 5). This suggests that if seasonal 

NDVI characteristics strongly diverge between both seasons, season-specific (NP) models are 

more effective in mapping NDVI* derived from GIMMS to NDVI* from operational 

products. This could partly result from the impact of low signal-to-noise ratios on NDVI* 

during relatively dry seasons. For products other than MODISA-NASA (as in the example of 

Figure 4) the general pattern is the same despite some changes in the values (not shown). 
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Note that on average the SP-model performs better for the SRSD as compared to the LRLD 

season, possibly due to the reduced NDVI dynamic range during LRLD in many divisions.  

 

Figure 4a suggests that for each division a different model may be selected to obtain optimal 

relationships between NDVI* derived from different sources. Arguably, this may in fact be an 

option for creating the long time series of drought indices for each division. Which model 

should be used for each individual division would depend on the operational NDVI time 

series selected (i.e. Figure 4a may deviate for other products). Here, in order to select one 

single modelling solution, we pragmatically evaluated the magnitude of performance 

improvement achieved increasing the specificity of the modelling solution (and thus, 

reducing its parsimony). For the example of MODISA-NASA, only for three divisions the DSP-

model‟s     
  was more than 0.10 higher than that of the SP-model; for most divisions the SP-

model performed at least similar to DSP, if not much better (Figure 3). On the contrary, when 

comparing the SP- to the more specific NP-model, only 23 per cent of the divisions for 

LRLD, and 6 per cent for SRSD show an improved performance by over 0.10 (     
 ) for NP-

models. Therefore, given the relatively close similarity between NP- and SP-models 

performances, we chose to confine ourselves in the further analysis to the more parsimonious 

SP-model. The use of a single model-type would also imply a simpler and more consistent 

solution for insurance design. At the same time, we acknowledge however that no single 

models „wins‟ across all divisions, and that the selection of different models for each division 

may be a better option based on purely empirical grounds. 

 

5.2 Comparison of NDVI products 

Figure 6 shows the division-level     
  results for the SP-model for all NDVI product pairs 

analysed. The first row depicts the relationship of NDVI* from GIMMS (slave) with NDVI* 
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from all operational NDVI products. Although differences are small, on average for all 

divisions SPOT-VGT has the highest (0.85) and MODIST-BOKU the lowest     
  (0.79). The 

spatial pattern of the relationship is very similar for all NDVI products in relation to GIMMS. 

    
 -values below 0.50 are found for all products in the driest divisions of Turkana in the 

north-west. The NDVI dynamic range is extremely low in this area (Figure 5), leading to low 

signal-to-noise ratios that negatively affect the relationships between products and moreover 

question the usability of the uncalibrated NDVI* for insurance purposes in these regions. The 

NDVI dynamic range is illustrated in Figure 7 for one poorly-performing division in Turkana 

(Lokichar), and a good-performing division in Moyale (Obbu). Despite the poor 

performances of some divisions, in many divisions the performance can be considered good. 

For example between GIMMS and SPOT-VGT, nearly half of all divisions have an     
  

above 0.90, and     
  above 0.80 are found in 82 per cent of the divisions (Table 4). eMODIST 

shows similar figures, while the other MODIS products demonstrate a somewhat poorer 

relationship with GIMMS. 

 

Compared to the relationship between operational NDVI products and GIMMS, the 

relationships among operational products showed a higher     
  (Figure 6). This may be 

largely attributable to the closer similarity of the spectral response functions of SPOT-VGT 

and MODIS. Because all MODIS products are based on the same sensor (although flown on 

two satellites), it is logical that the relationship between SPOT-VGT and MODIS shows 

stronger deviations as between individual MODIS products. Nonetheless, between SPOT-

VGT and eMODIST, 73 per cent of all divisions have an     
  above 0.95, and 94 per cent 

above 0.90, indicating overall good comparability of NDVI*. MODIST-BOKU has the poorest 

relationship with SPOT-VGT (21 and 67 per cent above     
 ‟s of 0.95 and 0.90, 

respectively), and also with other MODIS products. The different filtering used, and the fact 
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that the quality flags are not used for this product, may explain this behaviour, given that  

MODIST-NASA (based on the same MOD13Q1 product) performs much better. Still we can 

conclude from Figure 6 that most operational NDVI products provide comparable NDVI* 

values for the majority of divisions. In an operational context of division-level drought 

monitoring, this finding would allow their interchangeable use, which can be important in 

case one satellite sensor fails.  

 

While the calibration performance in terms of     
  informs us about the overall correlation 

between GIMMS and the operational products, a key interest for insurance payouts is 

whether different products are capable of identifying droughts and their relative severity. 

Despite relative poor calibration, it may still be possible that various NDVI products identify 

droughts similarly. As an example, Figure 8 compares the time series of z-scored NDVI* of 

GIMMS and three operational NDVI products for three divisions in Wajir County, each 

characterized by a different quality of the calibration against GIMMS (as indicated by the 

    
 -values for the SP-model). For the Gurar-Bute division, we can observe that three major 

droughts are identified by all NDVI products: in order of decreasing severity these are 2011 

LRLD, 2005 LRLD, and 2010 SRSD. For Buna and Eldas (    
  for GIMMS versus SPOT-

VGT of 0.82 and 0.66) five seasons are identified as dry by all products with z-scores below -

0.5. Despite that the major drought (2011 LRLD) is equally identified by all products, the 

severity ranking of these seasons differs slightly. Nonetheless, this comparison shows that 

even for relatively lower     
 -values, which are not very common in our analysis (Table 4), 

we may attain a reasonably comparable estimate of drought occurrence. 

 

Overall, our findings suggest that good perspectives exist for extending the operational NDVI 

products back in time to create longer time series of drought indices for livestock insurance in 
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Kenya. The only exceptions are the few poorly-performing divisions, notably the very arid 

divisions in Turkana with low signal-to-noise ratios. 

 

5.3 Effect on premium rates 

Figure 9 shows the premium rates for the SRSD season as calculated using Equation (5) and 

(6) for the period 2001-2012 from eMODIST and for the period 1981-2012 using the 

intercalibrated data. The average premium rate across all divisions equals 2.54 per cent for 

the period 2001-2012, and 2.95 per cent for the longer period. For individual divisions, the 

premium rate estimate changes significantly when using the longer period of intercalibrated 

data. For example, in the Kirisia division in the east of Samburu County, the estimated 

premium rate more than doubled when using the 1981-2012 period (4.6%) as compared to 

using only 2001-2012 (2.2%). Higher rates imply a higher expected livestock mortality, and 

consequently a higher cost for the pastoralist to purchase the insurance (assuming equal risk-

loading by the insurer), but simultaneously this could benefit the sustainability of an 

insurance scheme from the insurer‟s perspective. The standard deviation of the difference 

across all divisions is 1.14 per cent, which represents a significant amount of rate volatility in 

insurance terms. Such volatility may be expected in a dryland pastoralist system with strong 

deviations in asset losses. This example illustrates that the addition of 20 years of data has a 

strong impact on the premium.  

 

In statistical terms, the premium rates are expected to be more efficient and robust for a larger 

sample size (that is more seasons), provided that the relationship between mortality and the 

index is stable over time and that the intercalibration between sensors is effective. The 

stronger statistical basis may motivate insurers to reduce the risk-loading (Biener, 2013), 

which could partly off-set the increased premiums that were calculated based on the longer 
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time period for a large number of divisions. Further study should reveal whether the premium 

rates based on longer time series are also more efficient in ascertaining a sustainable 

insurance scheme. In this context, sustainable implies that in the long run, the scheme is 

attractive for both the insured and the insurer. In section 6 we will further discuss limitations 

of long time series, and their assumed stationarity, for effectively representing livestock 

mortality risks. 

 

 

6 Discussion 

Our study confirms that the GIMMS product is the most dissimilar among all NDVI products 

tested, a finding that can be attributed largely to the fact that the AVHRR sensor was not 

designed specifically for vegetation studies and consequently has much broader spectral 

bands for measuring red and NIR reflection (Trishchenko et al., 2002; Miura et al., 2006). We 

did not find evidence of markedly different performance among the operational NDVI 

products: pre-processing algorithms (i.e., temporal filtering) are partly responsible for 

differences that did occur. Our pragmatic approach of first focussing on the relevant 

aggregate drought indices (NDVI*), and subsequently comparing these across products, 

provided comparable measures across different NDVI products for most divisions of arid 

Kenya.  

 

Despite the high overall     
  (>0.95) between GIMMS and operational products for the 

global DSP-model (divisions and seasons pooled), division-specific models better predicted 

the temporal variability in NDVI* of different sensors per division. This outcome is not trivial 

as the more specific models are tuned on a reduced sample size (as compared to the global 

DSP-model) and are thus more exposed to potential over-fitting problems. This finding is 

supported by other studies that indicate location-specific dependencies on the relationship 
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between NDVI derived from different sensors (e.g., Miura et al., 2006; Swinnen and 

Veroustraete, 2008). Except for approximately 10 to 20 per cent of the divisions that have a 

very limited NDVI dynamic range, seasons with poor vegetation characteristics (due to 

drought conditions) could be properly identified by all NDVI products using the season-

pooled division-specific SP-model. Further disaggregation achieved by the NP-model, where 

the calibration is performed by each division and separately for the two seasons of interest, 

yielded relatively small improvements in prediction for more than 50 per cent of the 

divisions. Our results demonstrate that longer operational time series of the drought index can 

effectively be constructed for most divisions by mapping NDVI* from GIMMS to that of 

operational products. We fully acknowledge, however, that other approaches to achieve this 

may be identified, and that further improvements can be envisaged. Here we non-

exhaustively discuss a few possible improvements or adaptations to our approach. 

 

First, for several operational NDVI products we have more years of overlap available with 

the GIMMS dataset than the 18 seasons between October 2002 and September 2011 used 

here. These 18 seasons overlap between all products evaluated in our study, and were 

selected to provide a fair comparison among products. However, for example for SPOT-

VGT, eight more seasons are available. Incorporating these seasons in the regression may 

improve the estimation of the regression coefficients, and thus results in improved 

consistency of the combined long-term time series. 

 

Second, the observed deviation from linearity in the relationship between GIMMS and other 

NDVI products may be approached using a quadratic regression (see also Miura et al., 2006) 

to test the trade-off between the benefit of a potentially more appropriate model and the 

drawbacks of an increased parameterization. 
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Third, besides the three calibration options that we tested here (Equation 1-3), other 

intermediate levels of division- and season-pooling of NDVI* can be envisaged and may have 

benefits. For example, all divisions within a county could be used in a single regression 

equation. Within that county, depending if the characteristics of the two seasons are very 

distinct, also the seasons could be separately analysed. Another intermediate possibility 

would be to use all divisions simultaneously in a fixed effects panel regression model, in 

which a single slope is obtained for all divisions and different intercepts for each, thus 

reducing the amount of parameters to be estimated as compared to SP-models while 

increasing sample size (Baltagi, 2008). A more drastic consideration is whether we should 

stick to division-boundaries, or use a better ecological stratification of the area, possibly 

based on NDVI series as well (de Bie et al., 2011). For IBLI this would not be a good option, 

given that livestock mortality data are available at the division level, and divisions are for 

insurers and pastoralists the most logical unit for having the same insurance premiums and 

payout. Alternatively, divisions could be pooled based on ecological characteristics, for 

example through similarity-based clustering of their average NDVI profiles. The main 

advantage of this would be the increase of the sample size, possibly leading to more reliable 

estimates of the regression coefficients, while still keeping homogeneity of insurance contract 

within each division. While further empirical testing of different pooling levels could lead to 

slight improvements of calibration performances, it is likely that bigger benefit can be 

obtained by improving the design of the drought index itself. 

 

Two ways to improve the drought index (currently defined as the z-score of the division 

spatial average of the mean NDVI over two fixed time periods corresponding to the growing 

seasons, and jointly covering a whole calendar year without gaps) can be envisaged. A first 
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way would be through adapting the spatial aggregation step. Currently all pixels within a 

division are incorporated when calculating NDVI*. However, many pixels may have low 

signal-to-noise ratios (because vegetation is absent throughout the year, for example) 

affecting the calibration reliability. In addition, these pixels may not represent locations 

where livestock is actually grazing. Such pixels are less relevant concerning their effect on 

livestock conditions and could be excluded 1) by setting a threshold on the pixel‟s mean 

NDVI and/or its temporal variability, or 2) by incorporating land cover maps such as 

AfriCover (e.g., Genovese et al., 2001; Rojas et al., 2011). 

 

A second way to enhance the performance of the drought index, both in the construction of 

the long term archive and in the actual application of the index in the insurance scheme, 

could be through changing the definition of the seasons under consideration. Currently, in 

analogy to Chantarat et al. (2013) and the current IBLI design, the LRLD and SRSD together 

cover a full year. This implies, however, that a significant proportion of each season contains 

a (relatively) dry period. During this period, biomass is not developing and consequently 

NDVI values provide information of limited relevance regarding grazing opportunities for 

livestock. A better and more realistic tuning of the considered period is thus also expected to 

increase the correlation of the index with actual livestock mortality and therefore to further 

reduce the insurance basis risk. Moreover, given that exposure of bare soil impacts reflection 

differently depending on the spectral response functions, low biomass conditions tend to 

decrease the signal-to-noise ratio of the NDVI measurement, and as such decrease the 

comparability of NDVI* across sensors. A straightforward solution could be to shorten the 

seasons by removing the final one to three months of each season that is consistently 

dominated by dry conditions (see also Figure 7). However, the optimal time period for 

aggregation could change from division to division. A more appropriate approach could rely 
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on the automated identification of start- and end-of-season from the NDVI time series at 

pixel-level (Meroni et al., 2013; Vrieling et al., 2013) or aggregated per division (Rojas et al., 

2011; Vrieling et al., 2011). 

 

This study started from the premise that longer time series can better capture the full range of 

climatic variability and the related drought probability, resulting in improved pricing of 

insurance contracts. This premise is based on the fact that stationarity of NDVI can be 

assumed over the considered period. We should place two critical notes however. First, 

human-induced land use changes within the past 30 years (e.g., Brink and Eva, 2009) may 

have changed NDVI levels, which do not relate to drought. Second, if trends are present in 

the NDVI data (possibly due to climatic changes), the longer record may not help to better 

define drought probability for the upcoming season(s), unless the trends are accounted for. 

While land use could be relatively stable, and trends may be absent for many divisions, more 

detailed analysis may be needed for future use of long NDVI records in index-insurance. In 

this respect, comparison with other indices could also be explored, for example using tree 

ring data (Bell et al., 2013) that are now available for some parts of Africa (Gebrekirstos et 

al., 2009). 

 

This discussion contends that ample scope exists for further improving the remote sensing 

component of the IBLI project. While we achieved to compare several NDVI sources, and 

provided regression coefficients for creating longer time series of the NDVI* drought index, 

the final usefulness of the index (as derived from different sources) can only be ascertained 

when it can effectively model what is insured, i.e., livestock losses. Although drought is the 

main cause of livestock mortality in arid Kenya, above-normal wet conditions may also 

trigger livestock diseases such as East Coast Fever (Homewood et al., 2006), and Rift Valley 
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Fever (Anyamba et al., 2009). While this is somewhat acknowledged in the current IBLI 

scheme through the introduction of  a quadratic term (Equation 6), better predictions of such 

disease outbreaks may be possible. In this regard, NDVI series could also provide useful 

information (e.g., Norval et al., 1991; Anyamba et al., 2009; Trevennec et al., 2012). 

Upcoming household surveys within the IBLI project should reveal the importance of these 

diseases for livestock mortality in the region, and efforts are underway within the 

International Livestock Research Institute (and elsewhere) for NDVI-aided outbreak 

prediction. Eventually, NDVI-derived outbreak probabilities could be incorporated in the 

IBLI design to better account for increased mortality during above-normal wet conditions as 

well. 

 

7 Conclusions 

Index-based livestock insurance requires an accurate estimate of livestock mortality from an 

index to determine the insurance premium, and up-to-date information for determining 

payouts. Given that most mortality is drought-related, spatially- and temporally-aggregated 

NDVI is used as drought index input to livestock insurance in Kenya. With the aim of 

creating a long (>30 year) operational record of division-level seasonal drought indices for 

the arid lands in Kenya, we compared the non-operational 30-year GIMMS AVHRR record 

with six operational NDVI products (from MODIS and SPOT-VGT) and three modelling 

options. Based on cross-validated results, we conclude that division-specific models are the 

most effective in linking the division-level variability of the drought index (NDVI*) between 

the various products. In relation to the long-term GIMMS record, the SP-model explained 

over 80 per cent of the NDVI* variance for more than 80 per cent of all divisions for SPOT-

VGT and eMODIST. This implies that for most divisions, good scope exists for historically 

extending the aggregated drought index, thus providing a longer operational record for 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 30 

insurance purposes. Using a longer record has a significant influence on the insurance 

premium rates, as shown in this paper. We defined several possible future improvements to 

the drought index, which may also have a positive impact on the comparability of the 

resulting drought index time series. 

 

While our work specifically focussed on the demands of the IBLI project in Kenya, the need 

for long time series of drought indices is not specific to this project. Although not always 

effective or successful (Binswanger-Mkhize, 2012), index-based insurance of crop or 

livestock is seen by many as having a great potential for increasing agricultural production 

among smallholder farmers (Hazell and Hess, 2010; Coe and Stern, 2011), and many 

initiatives and pilot projects currently exist. Despite limitations (Turvey and McLaurin, 

2012), NDVI series are frequently used or considered in these projects, including for example 

for livestock insurance in Mongolia (Mahul and Skees, 2007) and the ongoing project 

“Evaluating remote sensing for index insurance” of the Weather Risk Management Facility 

(http://www.ifad.org/ruralfinance/wrmf/). Given the need for long time series for insurance 

design and pricing, our current work may further guide other index-insurance projects that 

seek to combine NDVI series. 
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Appendix A: Detailed description of NDVI data sets 

 

A.1 GIMMS AVHRR 

To obtain long time series of NDVI data, we used the 8-km resolution NDVI dataset that was 

constructed by the GIMMS project. This 15-day (two maximum-value composites per month) 

product covers July 1981 to December 2011. The AVHRR sensors used to construct the 

dataset were flown on six satellites. The GIMMS AVHRR dataset has been corrected for 

factors that do not relate to changes in vegetation greenness, and the latest version (NDVI3g) 

applies an improved cloud masking as compared to older versions of the GIMMS dataset 

(Tucker et al., 2005; Pinzón and Tucker, 2013). 

 

A.2 SPOT-VGT 

We obtained ten-daily SPOT-VGT NDVI composites (S10 product) with a 1-km spatial 

resolution for 1998-present through the Flemish Institute for Technological Research (VITO). 

Three composites cover exactly one month, i.e. for day 1-10, 11-20, and 21-last day of each 

month. Following atmospheric correction (Rahman and Dedieu, 1994),  a constrained view-

angle maximum value composite rule is applied. For Africa, the data are available in near-

real time through the VGT4Africa and GEONETCast projects (Jacobs et al., 2008). We used 

the quality flags provided with the data to discard observations affected by clouds or 

shadows, or that otherwise have a bad radiometric quality in the red or NIR band. 

 

A.3 MODIS 

We used two series of 16-day NDVI constrained view-angle maximum value composites 

from the 250-m resolution global MODIS vegetation indices product Collection 5, i.e. for 

Terra (MOD13Q1) and for Aqua (MYD13Q1). Similarly to the SPOT-VGT product, the 
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maximum-value compositing employed for these products selects the highest NDVI values, 

but constrains the candidate pixels by the view angle (Huete et al., 2002). We refer to this 

Terra-derived product here as MODIST-NASA and the Aqua-derived product as MODISA-NASA. 

Quality flags provided with the data were used to mask out unreliable observations (i.e., 

MODIS quality flag greater than 1 and usefulness flag greater than 5). 

 

A.4 MODIS – Whittaker filter 

The University of Natural Resources and Applied Life Sciences (BOKU) in Vienna, Austria, 

provides on-demand temporally-filtered MODIS NDVI composites, based on the Terra- and 

Aqua-derived products described above (section A.3). Their service includes temporal 

filtering, mosaicking, sub-setting, and reprojection, and can deliver data requests within a 

day, including near-real time acquisitions (Vuolo et al., 2012). The temporal filtering is 

achieved with a modified Whittaker filter (Atzberger and Eilers, 2011). This least squares 

approach incorporates a „penalty‟ criterion regarding the smoothness of the resulting NDVI 

profile. Currently, MODIS quality indicators are not used to mask NDVI observations prior 

to filtering, following the assumption that poor observations have low NDVI values and will 

be corrected by the temporal filter (Vuolo et al., 2012). Exploiting the availability of NDVI 

products from Terra and Aqua platforms (both originally composited from NASA at 16-day, 

but with temporal compositing window shifted of 8 day), BOKU provides both a standard 16-

day composite based on Terra only (here referred to as MODIST-BOKU) and Terra plus Aqua 

combined product produced every 8 days (here MODIST+A-BOKU). The product based on Aqua 

only was not considered in this paper, but is also processed by BOKU. 

 

A.5 eMODIS 
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The eMODIS data (e for „enhanced‟, „expedited‟, and „expandable‟) for Africa contain 10-

day NDVI composites at 250-m resolution that are constructed using similar algorithms as 

the Collection-5 MODIS products (Jenkerson et al., 2010). The United States Geological 

Survey (USGS) has produced these composites since 2010 to better respond to user needs 

(regarding for example projections and compositing periods). Both historical archive data and 

near-real time composites are freely available online. The 10-day composites are produced 

every five days resulting in six composites per month. Here we only took the composites that 

cover days 1-10, 11-20, and 21-last day of each month, i.e. the same composite periods as for 

SPOT-VGT. While unfiltered composites can be obtained for the full Africa window, for this 

study we used the filtered eMODIS product for the East Africa window that is employed 

operationally for food security monitoring activities of FEWS-NET. The temporal filtering is 

based on a weighted least-squares regression approach that gives highest weights to local 

peaks in the NDVI profile, and lowest weights to local valleys (Swets et al., 1999). The 

filtered data are available for January 2001 until present. For clarity in this paper we add 

subscript “T” (for Terra) to refer to this dataset, i.e., eMODIST.  
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Tables 

Table 1. Main characteristics of the NDVI products used in this study. 

 

 

* The names refer to the abbreviations for the datasets used in this article 

** We here indicate here if the original data sources were filtered. Unfiltered datasets were smoothed by us 

using an iterative Savitzky-Golay filter (see section 4.1).  

Table 2. Statistics from the global DSP-model, where division- and season-level NDVI* from 

GIMMS is mapped to NDVI* of each of the six datasets listed in the table.           
  is an 

aggregate measure of the temporal prediction capability for each division and season (section 

4.3).  

  

Name dataset* Sensor Platform Data 

provider 

Start Resolution 

(m) 

Composite 

period 

(days) 

Temporal filtering** 

GIMMS AVHRR NOAA  
(7 satellites) 

NASA 1981  
(-2011) 

8,000 15 - 

SPOT-VGT VEGETATION SPOT 4 and 5 VITO 1998 1,000 10 - 

MODIST-NASA MODIS Terra NASA 2000 250 16 - 

MODISA-NASA MODIS Aqua NASA 2002 250 16 - 

MODIST-BOKU MODIS Terra BOKU 2000 250 16 Atzberger and Eilers (2011) 

MODIST+A-BOKU MODIS Terra+Aqua  BOKU 2002 250 8 Atzberger and Eilers (2011) 

eMODIST MODIS Terra USGS 2001 250 10 Swets et al. (1999) 

Name dataset    
            

         data bias              

(x1,000) 

SPOT-VGT 0.921 0.647 0.029 -0.065 0.136 

MODIST-NASA 0.923 0.662 0.031 -0.039 0.122 

MODISA-NASA 0.929 0.672 0.030 -0.044 0.142 

MODIST-BOKU 0.917 0.622 0.033 -0.037 0.110 

MODIST+A-BOKU 0.924 0.652 0.031 -0.046 0.127 

eMODIST 0.922 0.658 0.030 -0.058 0.145 
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Table 3. Percentage of the divisions where the division- and season-specific models (SP and 

NP) outperform the pooled models (DSP and SP), respectively.  

 

 

 

 

 

 

 

 

Table 4. Percentage of the divisions where     
  from the SP-model is higher than the 

indicated thresholds.  

  

Name dataset    
         

          
         

      

  LRLD SRSD 

SPOT-VGT 88 44 51 

MODIST-NASA 82 61 57 

MODISA-NASA 82 68 54 

MODIST-BOKU 76 63 62 

MODIST+A-BOKU 79 61 56 

eMODIST 89 58 50 

Name dataset    
 (SP) 

 >0.50 >0.70 >0.80 >0.90 >0.95 

SPOT-VGT 96 89 82 46 11 

MODIST-NASA 95 90 77 38 6 

MODISA-NASA 94 88 77 38 5 

MODIST-BOKU 94 82 70 8 1 

MODIST+A-BOKU 95 86 77 30 4 

eMODIST 95 89 81 46 11 
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Figures 

 

 

Figure 1: Overview of the study area where the image shows the average NDVI from SPOT-

VGT for March 1999 until February 2013 (i.e. for 14 LRLD and 14 SRSD seasons) for 

Kenya. The black polygons are the 9 Kenyan counties that were considered in this study, with 

the 84 aggregated divisions (red lines). The aggregation departed from the original 108 

divisions in these counties, where small divisions (<1,000 km
2
) within the same county were 

joined.  
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Figure 2: Scatterplots showing NDVI* (seasonally-averaged NDVI and aggregated per 

division) derived from GIMMS (x-axis) against NDVI* from each of the other NDVI 

products. Each plot contains a total of 1,512 data points (84 divisions x 9 years x 2 seasons 

per year).  
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Figure 3: Frequency distribution of the division-level     
  difference between the DSP- and 

SP-models. Negative values (red bars) account for 82 per cent of the divisions and indicate 

that the SP-model outperforms the DSP-model. The example shown is for MODISA-NASA.  
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Figure 4: Comparison of models with different levels of pooling at division level: (a) 

displays the model that has the highest     
  for each division. Note that for this the     

  of the 

DSP-model was compared with the SP-model‟s     
 , and with the average     

  for both 

seasons (LRLD and SRSD) of the NP-model. The maps (b) and (c) show the difference in 

    
  (SP-NP), separately for LRLD and SRSD. Example for MODISA-NASA.  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 43 

 

Figure 5: The difference between the 95
th

 and 5
th

 percentile of 10-daily filtered NDVI from 

SPOT –VGT for October 2002 – September 2011. The difference was calculated separately 

for the LRLD season (a: March-September) and the SRSD season (b: October-February). The 

black lines are country boundaries and grey lines are the aggregated division boundaries.  
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Figure 6: Division-level     
  results between all NDVI product pairs analysed, based on the 

SP-model (Equation 2) that links division- and season-averaged NDVI (NDVI*) for the slave 

dataset (rows) to that of the master dataset (columns).  
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Figure 7: Division-average NDVI profiles for Obbu division (Marsabit County) and 

Lokichar division (Turkana County) for GIMMS and SPOT-VGT for October 2002 – 

September 2011. Vertical lines indicate the start of each season (L=LRLD, S=SRSD).  
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Figure 8: Comparison of z-scored NDVI* from four NDVI products for three divisions in 

northern Wajir County. See Figure 1 for the location of Wajir within Kenya. The divisions 

represent one with a high     
 -value (the aggregated Gurar+Bute division), a medium value 

(Buna), and a low value (Eldas). The base for z-score calculation was the overlapping period 

(2002 SRSD – 2011 LRLD), and calculations were performed separately for LRLD and 

SRSD.  
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Figure 9: The insurance premium rate (%) for the SRSD season as calculated from eMODIST 

for the period 2001-2012 (a), and using the 1981-2012 time series as obtained from the 

eMODIST intercalibration with GIMMS (b). Map (c) shows the difference in premium 

between both, i.e., 1981-2012 minus 2001-2012. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 1

Address for correspondence: 
Anton Vrieling 
University of Twente – Faculty ITC 
P. O. Box 217 
7500 AE Enschede 
The Netherlands 
T: +31 53 4874452 
E: a.vrieling@utwente.nl 

Historical extension of operational NDVI products for livestock 

insurance in Kenya 

Anton Vrielinga, Michele Meronib, Apurba Sheec, Andrew G. Mudec, Joshua Woodardd, Kees 

de Biea, Felix Remboldb 

a University of Twente, Faculty of Geo-information Science and Earth Observation, P.O. Box 217, 

7500 AE Enschede, The Netherlands. E-mail: a.vrieling@utwente.nl; c.a.j.m.debie@utwente.nl 

b Institute for Environment and Sustainability, Joint Research Centre, European Commission, Via E. 

Fermi 2749, I-21027 Ispra (VA), Italy. E-mail: michele.meroni@jrc.ec.europa.eu; 

felix.rembold@jrc.ec.europa.eu 

c International Livestock Research Institute, P.O. Box 30709, Nairobi 00100, Kenya. E-mail: 

a.shee@cgiar.org; a.mude@cgiar.org 

d Cornell University, Dyson School of Applied Economics and Management, 236 Warren Hall, Ithaca, 

NY 14853, United States of America. E-mail: joshua.woodard@cornell.edu  

October 2013, submitted to JAG 

December 2013, revised version submitted to JAG 

 

Annotated Manuscript (text only)
Click here to view linked References

http://ees.elsevier.com/jag/viewRCResults.aspx?pdf=1&docID=3190&rev=1&fileID=98656&msid={B8A32B66-A8E3-41C0-AF46-846AD372032C}


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 2

Abstract 

Droughts induce livestock losses that severely affect Kenyan pastoralists. Recent index 

insurance schemes have the potential of being a viable tool for insuring pastoralists against 

drought-related risk. Such schemes require as input a forage scarcity (or drought) index that 

can be reliably updated in near real-time, and that strongly relates to livestock mortality. 

Generally, a long record (>25 years) of the index is needed to correctly estimate mortality 

risk and calculate the related insurance premium. Data from current operational satellites 

used for large-scale vegetation monitoring span over a maximum of 15 years, a time period 

that is considered insufficient for accurate premium computation. This study examines how 

operational NDVI datasets compare to, and could be combined with the non-operational 

recently constructed 30-year GIMMS AVHRR record (1981-2011) to provide a near-real 

time drought index with a long term archive for the arid lands of Kenya. We compared six 

freely available, near-real time NDVI products; five from MODIS, and one from SPOT-

VEGETATION. Prior to comparison, all datasets were averaged in time for the two 

vegetative seasons in Kenya, and aggregated spatially at the administrative division level at 

which the insurance is offered. The feasibility of extending the resulting aggregated drought 

indices back in time was assessed using jackknifed R2 statistics (leave-one-year-out) for the 

overlapping period 2002-2011. We found that division-specific models were more effective 

than a global model for linking the division-level temporal variability of the index between 

NDVI products. Based on our results, good scope exists for historically extending the 

aggregated drought index, thus providing a longer operational record for insurance purposes. 

We showed that this extension may have large effects on the calculated insurance premium. 

Finally, we discuss several possible improvements to the drought index.  

 

Keywords:  NDVI, AVHRR, SPOT, MODIS, index insurance, intercalibration 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 3

1 Introduction 

Coping with drought is a major challenge for pastoralists in the arid and semi-arid parts of 

Kenya (Little et al., 2001; Nkedianye et al., 2011). During dry years many animals die 

because of insufficient feed and water, and from drought-related epidemic diseases (Onono et 

al., 2013). Such losses can have severe, long-term consequences on pastoralist households if 

their herd sizes fall below specific thresholds (Barrett et al., 2006).  

 

Insurance against the risk of livestock mortality may reduce the negative consequences of 

drought-induced  livestock loss, and avoid families falling into poverty (Chantarat et al., 

2013). As opposed to traditional agricultural insurance, requiring expensive verification of 

individual losses by the insurer, a more cost-effective insurance approach is to base payouts 

on a transparent and objectively measured variable, such as total seasonal rainfall (Barnett et 

al., 2008). This is referred to as index-based insurance. Recently, index-based insurance 

received much attention as it could make important contributions to agricultural growth and 

reduction of poverty (Hazell and Hess, 2010; Brown et al., 2011). Despite concerns regarding 

the demand for insurance by poor farmers (Binswanger-Mkhize, 2012), and challenges of 

reaching sufficient scale among numerous pilot projects, the risk-management potential that 

index insurance could offer poor farmers fuels continued interest and efforts to improve 

product design (Barrett et al., 2007; Barnett et al., 2008).  

 

A main limitation to index-based insurance is the possibility for households to experience a 

loss, but no payment, or alternatively not experience a loss, but yet receive a payment 

(Barnett et al., 2008). This is referred to as ‘basis risk’ and is caused by the imperfect 

relationship between the index and incurred losses. For index-based insurance schemes to be 

effective, they require an index that: 
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1) strongly correlates with what is insured (such as livestock or crop losses);  

2) is independently verifiable, i.e. based on well-described data sources and processing 

methods; 

3) can reliably be delivered into the future (at least for the duration of the insurance 

contract) and is available in near real-time, so that shortly after losses are incurred, 

payments can be made; 

4) is available for sufficiently long records to properly represent the climatic variability 

for estimating the probability of a payout, and thus accurately pricing of the insurance 

product (Bell et al., 2013)., and thus accurately pricing of the insurance product. 

 

Time series of the normalized difference vegetation index (NDVI) have been used for the 

purpose of index-based insurance (Turvey and McLaurin, 2012; Leblois and Quirion, 2013). 

A number of near real-time composite NDVI products are freely available from sensors such 

as MODIS (Moderate Resolution Imaging Spectroradiometer) and SPOT-VGT (Système 

Pour l’Observation de la Terre - VEGETATION). These sensors offer a relatively coarse 

spatial resolution (250-1000m), but provide observations of the same area on a daily basis. 

This last aspect is important to reduce cloud and atmospheric effects in the composite 

products, and to effectively compare vegetation conditions within and between years. Given 

that droughts generate spatially-correlated covariate risks that simultaneously affect a larger 

number of neighbouring households, pixel-level NDVI values are generally spatially 

aggregated. In most cases this aggregation is also a necessity for modelling crop and 

livestock losses, because data on production or mortality are often only available for 

administrative regions. As a consequence, each administrative unit has different premium 

specifications and payouts are equal for all insurance customers within a given unit. 
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In the absence of reliable station rainfall data, the index-based livestock insurance (IBLI) 

project in Kenya uses NDVI as a proxy for forage scarcity – a key determinant of livestock 

mortality in pastoral production systems (Chantarat et al., 2013). The insurance design for the 

Marsabit district of northern Kenya was extensively described by Chantarat et al. (2013). 

While they used rectangular clusters, the IBLI project currently uses administrative divisions 

for spatial aggregation. Since 2010, the IBLI project has operated in the Marsabit district, and 

between 2013 and 2014 the project plans to expand to cover about 60 per cent of Kenya’s 

land surface that constitutes its so-called arid lands. In the four years (eight seasons) during 

which pastoralists in Marsabit have purchased insurance they received three times insurance 

payouts following drought. For operational purposes MODIS was selected as the main data 

source, following the suspension in the delivery of AVHRR (Advanced Very High 

Resolution Radiometer) NDVI composites by the Famine Early Warning Systems Network 

(FEWS-NET) due to the degradation of the NOAA-17 AVHRR sensor. A main drawback of 

MODIS is that it covers only the years 2000 to present, hence insufficient to capture the full 

range of climatic variability and the related drought probability, needed to properly price 

insurance contracts. Uncertainties regarding this probability due to data restrictions would 

lead insurers to add risk-loading to the premium prices, thus making the insurance more 

expensive and consequently less attractive to pastoralists (Biener, 2013). 

 

The creation of a long-term consistent NDVI time series from multiple sources is not a trivial 

task due to differences in sensor characteristics and algorithms used to generate products 

(Miura et al., 2006). Differences in spectral response functions between sensors are a key 

characteristic responsible for the variation in NDVI (Trishchenko et al., 2002; Trishchenko, 

2009). Based on spectral convolution of hyperspectral Hyperion data, Miura et al. (2006) 

reported that the NDVI relationship among MODIS, AVHRR and ETM+ instruments is non-
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linear and largely dependent on how much the green peak (550 nm) and red edge (680-780 

nm) regions are included in the red band. Despite that they find near-linear NDVI 

relationships by direct comparison of AVHRR and MODIS (in correspondence to the 

empirical study by Gallo et al., 2005), they indicate that higher-order polynomials may be 

more accurate in modelling cross-sensor NDVI relationships. Additional factors that cause 

cross-sensor variability of NDVI include atmospheric and bi-directional reflection effects, 

which are also wavelength dependent (Myneni and Asrar, 1994; Sandmeier et al., 1998). This 

combination of factors complicates a straightforward joining of NDVI series derived from 

multiple sensors.  

 

Many attempts have been made to construct a single long-term NDVI record from AVHRR 

sensors onboard multiple satellites, which effectively corrects for effects like sensor 

degradation, orbital drift, and atmospheric variability (James and Kalluri, 1994; Tucker et al., 

2005). Recently, the Global Inventory Monitoring and Modeling System (GIMMS) project 

released a 30-year record of the so-called NDVI3g, i.e., third generation GIMMS NDVI from 

AVHRR sensors. While effectively combining data from various AVHRR sensors already 

presents a big challenge, spectral response functions are even more dissimilar in comparison 

to SPOT-VGT and MODIS that have narrower spectral bands (Gao, 2000). Proposed 

corrections include empirically-derived linear functions (Steven et al., 2003; Gallo et al., 

2005; Song et al., 2010) and second-order polynomial regression equations (Trishchenko et 

al., 2002). Swinnen and Veroustraete (2008) found a strong linear relationship between 

SPOT-VGT and 1-km2 AVHRR NDVI for Southern Africa after rigorous reprocessing of 

spectral reflectance data using the same atmospheric correction and compositing approaches. 

They effectively accounted for differences in the dynamic range between SPOT-VGT and 

AVHRR using the adjustment functions of (Trishchenko et al. (2002)). Alternatively, neural 
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networks, which incorporated data layers reflecting atmospheric conditions, have been used 

to account for the differences between AVHRR and MODIS (Brown et al., 2008). However, 

despite various suggestions regarding the achievability of an intercalibrated, sensor-

independent NDVI record (e.g. Steven et al., 2003; Brown et al., 2006), and recent efforts 

towards delivering this to the public (Pedelty et al., 2007; Gutman and Masek, 2012), no 

universally-accepted multi-sensor NDVI record exists to date that both covers a long (> 25 

year) time frame and is available in near real-time. 

 

The aim of this study is to provide a pragmatic solution for combining NDVI composite 

products derived from multiple sensors (i.e. AVHRR, MODIS, and SPOT-VGT) for the 

purpose of the livestock insurance programme in Kenya. Rather than analysing cross-sensor 

NDVI differences per pixel and composite period, we first aggregate the NDVI in space and 

time to provide an appropriate index in the framework of the IBLI project. This implies 

aggregation over administrative divisions and for two periods within each year, 

corresponding to the two growing seasons occurring in the region. We first evaluate if a 

global regression model (taking all divisions and periods together) can accurately map the 

aggregated index from one NDVI product to another. As our overall purpose is to have a long 

record that accurately displays drought-related risk for each administrative unit, which can be 

updated in near real-time and serve as an input to model livestock mortality, we subsequently 

perform a cross-sensor comparison at the division level, considering the two seasons together 

and separately, to examine if this increasing level of disaggregation improves the 

intercalibration performances with respect to the global model. Besides comparing merely 

with the non-operational historic AVHRR record, we also compare operational products to 

evaluate to what extent these datasets can be used interchangeably. This last issue may be 

important in case of satellite sensor failure in the future. Finally we evaluate if and how the 
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availability of a longer intercalibrated time series will affect the premium rate for the 

livestock insurance product. 

 

 

2 Study area 

The study area comprises the nine counties of Kenya that are planned to be covered by the 

IBLI project over the next one to two years, and are referred to by the Government of Kenya 

as the arid lands (Figure 1). Since 1996, the government has collected household-level 

livestock mortality data in representative locations across the study area, in the framework of 

the Arid Land Resource Management Project (ALRMP, http://www.aridland.go.ke). The nine 

counties together cover approximately 62 per cent of Kenya’s land area. According to Peel et 

al. (2007), the area contains three Köppen-Geiger climate zones in approximately equal 

amounts, i.e., tropical savannah climate (Aw), hot steppe climate (BWh), and hot desert 

climate (BSh). Based on 1998-2012 data of the Tropical Rainfall Measurement Mission 

(3B43 product), average annual rainfall ranges from less than 300 mm in the dry parts of 

Isiolo, Marsabit, Turkana, and Wajir Counties, to more than 10001,000 mm only in the south-

western part of Baringo County. Two rainfall seasons can be discerned: the so-called long 

rains (March-May) and the short rains (October-December) separated by clear dry seasons. 

Following Chantarat et al. (2013), we term this bi-modal seasonal pattern as Long Rains 

Long Dry (LRLD) covering March to September and Short Rains Short Dry (SRSD) 

covering October to February. Livestock keeping is the main rural livelihood in the region. 

Livestock includes camels (in the driest parts), goats, sheep, and cattle. To standardize across 

the livestock types, and to facilitate the development of a single livestock-based insurance 

product, livestock numbers owned by households are expressed in Tropical Livestock Units 

(TLU); 1 cattle equals 1 TLU, 1 camel is 1.4 TLU, and a goat or sheep equals 0.1 TLU. 
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Our analysis focussed on the division-level, as this is the basic unit for which insurance 

premium and payout are determined. The nine counties comprise 108 divisions. Given the 

small size of some divisions and the consequent difficulty of obtaining a representative 

division-level drought index, especially from the 8-km resolution AVHRR series, we set a 

minimum threshold for division size. Starting from the smallest division, we iteratively 

aggregated divisions smaller than 1,000 km2 to the neighbouring division within the same 

county that had the nearest centroid coordinates. This resulted in 84 spatial units that we 

further refer to in this paper simply as divisions. The red lines in Figure 1 show the resulting 

division boundaries. 

 

 

 

3 NDVI data sets 

To select potential sources of operational NDVI time series data we considered the two 

following criteria: i) archive and near-real time data should be freely available, and ii) no or 

minimum post processing should be required to facilitate their use by less-specialized users. 

As a result, a non-exhaustive list of six operational products was compiled: five derived from 

MODIS instruments onboard Terra and Aqua platforms, and one from SPOT-VGT. In 

addition, the new long-term non-operational dataset derived from AVHRR (NDVI3g) was 

used to create a longer historic record. The main characteristics of the products are 

summarized in Table 1, and Appendix 1 provides a detailed description of each. 
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4 Methods 

4.1 NDVI processing 

For the unfiltered datasets, i.e., GIMMS, SPOT-VGT, MODIST-NASA, and MODISA-NASA 

(Table 1), we applied an iterative Savitzky-Golay filter (Savitzky and Golay, 1964) as 

described by Chen et al. (2004) to reduce remaining atmospheric effects in the time series. To 

do that, we first created a mask to discard any NDVI values that were cloudy or otherwise of 

poor quality. For this we used the quality information delivered with the SPOT-VGT, 

MODIST-NASA, and MODISA-NASA data (Appendix A), while for GIMMS we masked out any 

NDVI values below 0 and with an increase of more than 0.30 in 15 days. The filter was 

subsequently applied using a third-order polynomial and a moving window of three 

observations prior to, and after the data point to be filtered. Visual analysis of the resulting 

time series showed that this procedure substantially reduced noise in the series, effectively 

interpolated missing values, while retaining short-term variations that relate to real changes in 

greenness. 

 

Besides introducing the temporal filtering, we further adapted the NDVI processing sequence 

from the original IBLI design (Chantarat et al., 2013) to provide improved metrics of the 

season performance, which should also allow for better comparison between different 

sensors. In the original design, Chantarat et al. (2013) first transformed the 10-daily NDVI 

images to standard scores (or z-scores). The z-scored NDVI indicates how many standard 

deviations the pixel’s NDVI is above or below the multi-annual mean pixel value of the same 

10-day period (e.g., 1-10 January). They then spatially aggregated the z-scored NDVI, and 

subsequently cumulated the aggregated values over time for two periods, i.e., long rains-long 

dry (LRLD, March-September) and short rains-short dry (SRSD, October-February). The 

idea behind aggregating z-scores of 10-day periods is that adverse forage conditions may 
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occur at any time during the season; however, forage is not produced during the entire season 

(as defined by LRLD and SRSD). A drawback of directly calculating z-scores for each time 

step is that small deviations during relatively dry moments of the season can translate to large 

z-scores, which get equally weighted with smaller z-scores during wet moments (that can 

however represent stronger absolute deviations) when cumulating over time. To prevent this 

problem and get a better measure of seasonal forage production, we first performed temporal 

aggregation, then spatial aggregation, and finally z-scoring. 

 

We performed temporal aggregation for each pixel for both LRLD and SRSD. The average 

seasonal NDVI was used for this aggregation, which is in the temporal context functionally 

similar to the cumulative NDVI value, a suitable proxy of seasonal biomass production (e.g., 

Bonifacio et al., 1993; Funk and Budde, 2009). The advantage of using the average compared 

to the cumulative value is that 1) values for the two seasons of different length are in the 

same units and range, and 2) it is insensitive to the different length of the compositing period 

of the different NDVI products. We then spatial aggregated the temporally-averaged NDVI 

by calculating the average value for each division (see section 2 on the divisions used). Given 

the coarse resolution of GIMMS, for this product we calculated a weighted average that 

reflects the amount of overlap a pixel has with a division. 

 

While the z-scored values are the input for calculating insurance premiums (section 4.4), the 

basis in this paper for the intercalibration between NDVI products are the NDVI values, 

aggregated in space and time. We further refer to them as NDVI*. 

 

4.2 Intercalibration 
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To evaluate if different NDVI products perform similarly in identifying division-level 

drought conditions, all data comparisons are based on NDVI*. For all dataset combinations, 

we compared results using only the overlapping period between the seven datasets, i.e. the 

period between July 2002 and December 2011. This period contains a total of 18 seasons, i.e. 

9 LRLD seasons and 9 SRSD seasons. 

  

Given the relatively small sample size available for intercalibration we limited our analysis to 

the linear component of the relationship between NDVI products. Visual inspection of 

scatterplots provided no indication of non-(Figure 2) and the residuals following linear 

regression (data not shown) suggest a slight deviation from linearity between GIMMS-

derived NDVI* and NDVI* derived from different sensors. However, given the relatively 

small sample size available for intercalibration we limited our analysis to the linear 

relationship between NDVI products (Figure 2).. We tested three calibration models that use 

different levels of pooling of the division-level and season-level NDVI* data (Equations 1-3, 

discussed below). The aim of this was to evaluate 1) which NDVI-products show highest 

correlation with the long-term GIMMS dataset, 2) which level of pooling across season and 

space is most efficient in transforming NDVI* between one source and another, 3) for which 

divisions/regions in Kenya the various products lead to the same seasonal vegetation 

condition (and hence drought) assessment. 

 

4.2.1 Global model (DSP) 

We first assessed the performances of a global calibration model (combining all divisions and 

seasons) in translating GIMMS-derived NDVI* to the NDVI* obtained from other NDVI 

products, and evaluated which operational product yielded the closest agreement. We refer to 
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this model as the DSP-model, meaning “Divisions and Seasons Pooled”. It takes the 

following form: 

����_�	�,

∗ � 
� � 
� ∗ ����_�	�,


∗ � ��,
                 (1) 

 

where ����_��,

∗  is the average NDVI for division d and season s for the NDVI-series that is 

used as the master (or dependent variable), while ����_��,

∗  is the average NDVI for a 

division that will be mapped to the master (i.e., the slave, or independent variable). For 

example, to create longer time series for GIMMS that are compatible with MODIS, GIMMS 

is considered the slave and MODIS the master. The parameters 
� and 
� are the regression 

coefficients to be estimated and � is error term. The global model is parsimonious in terms of 

number of parameters to be estimated (i.e., two with a sample size of 18 seasons x 84 

divisions). 

 

4.2.2 Division-specific season-pooled model (SP) 

Despite its parsimonious nature, the DSP-model may not be able to model division-level 

specificities in the relationship between products. Cross-division differences may arise 

because of different NDVI dynamic ranges interacting in a complex way with sensor-specific 

NDVI saturation levels, different soil background affecting NDVI as a result of sensor-

specific spectral response functions, and finally, interaction of local climatology with 

differences in NDVI processing chains (such as cloud screening and atmospheric correction) 

affecting locally the relationship between products. These issues justify the evaluation of a 

less parsimonious division-specific regression model (two parameters to be estimated with a 

sample size of 18 seasons, for a total of 2x84 parameters), referred to here as SP-model 

(“Season Pooled”). The SP-models can be written as: 

����_��,

∗ � 
�,�	 � 
�,� ∗ ����_��,


∗ � ��,
                 (2) 
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where the parameters 
�,� and 
�,� are now the division-specific regression coefficients to be 

estimated.  

 

4.2.3 Division-specific season-specific model (NP) 

Finally, in order to evaluate if any season-specific effect on the relationship is present, we 

also evaluated at the division level if separating the LRLD and SRSD seasons improves our 

regression estimates. This is referred to here as the NP-models (for “No Pooling”) and, in 

terms of number of parameters, it is the least parsimonious model considered (two parameters 

to be estimated with a sample size of nine seasons, for a total of 2x2x84 parameters). The 

NP-model can be expressed as: 

����_��,

∗ � 
�,�,
 � 
�,�,
 ∗ ����_��,


∗ � ��,
                (3) 

 

where 
�,�,
, 
�,�,
 are now specific for each combination of division and season. 

 

4.3 Performance evaluation 

The increased level of specificity going from the DSP-model, via SP-, to NP-models is 

achieved at the expense of a reduced sample size on which the model is calibrated, giving rise 

to a trade-off  between the capacity of the calibration model to take spatial heterogeneity into 

account and data availability. In fact, although the performances in fitting increase by 

definition when a more specific model is employed, this may not happen in prediction 

because of model overparameterization. Overparameterization occurs when the amount of 

information contained in the calibration data is not enough to estimate the model parameters. 

The resulting model fits the calibration dataset, but produces large errors when used in 

prediction. Conversely, underparameterization refers to a situation in which the available 
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information is not fully exploited by the restricted set of model parameters. Therefore, 

over/under-parameterization must be minimized to achieve the best predictive capacity. In 

order to choose the best modelling solution with the data at hand, we assessed the prediction 

performance of different NDVI product pairs for the different regression options using a 

cross-validation jackknifing technique, where one full year of data was left out at a time. 

 

For each jackknifed year, regression coefficients were estimated on the retained dataset and 

subsequently applied to estimate ����_�	�,

∗  of the year left apart. Performances were then 

evaluated using the cross-validated R2 (i.e., ���� ). The ����  measures the fraction of total 

NDVI variability that is explained by the model in prediction, in all the dimensions of the 

database under consideration. For example, for the global DSP-model (Equation 1) the total 

variability is characterised by the spatial (division), seasonal, and interannual dimensions. As 

the main objective of our intercalibration is to accurately reconstruct the interannual 

variability of NDVI* at division and seasonal level, we are not interested in the ability of our 

model to explain the variability in the spatial and seasonal dimensions. For the DSP-model 

evaluation, we therefore compute the ����  within division and season (������,�
�
� ), informing 

us on the temporal prediction capability only. This can be expressed as: 

  ������,�
�
� � 1 �

∑ ∑ ∑ ��� !_"#,$,%
∗ &�� !_"',$,%

∗( )
*+

%
,
$

-
#

∑ ∑ ∑ ��� !_"#,$,%
∗ &�� !_"$,%

∗...............)
*+

%
,
$

-
#

        (4) 

 

where ����_�/,�,

∗(  is the NDVI_M* predicted by the model in year i, division d, and season 

s; and ����_��,

∗.............. is the average NDVI_M* over the years for division d and season s. For 

clarity, in this study I=9 years, D=84 divisions, and S=2 seasons. By using the division- and 

season-specific NDVI_M* averages in the denominator of Equations 4 instead of global 

average used in the standard ���� , we measure to what extent the selected model performs 
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better than a naïve model that every year predicts a NDVI_M* that equals the multi-annual 

average for each division and season. 

 

4.4 Calculation of premium rates 

To evaluate the impact of having longer NDVI* time series (following intercalibration) on 

insurance pricing, we calculated premium rates using data for both the 2001-2012 period for 

eMODIST as well as for the augmented period of 1981-2012 using the intercalibrated data.  

We estimated the premium rate as the expected value of the insurance payout rates using the 

historical distribution of z-scored NDVI* (zNDVI*). For clarity, zNDVI* indicates how many 

standard deviations NDVI* is above or below its division- and seasonal mean value. For 

illustration purposes we only present results for the SRSD season. 

 

The insurance is structured as a simple index insurance contract that pays when livestock 

mortality predicted by zNDVI* exceeds a predefined mortality level (called strike level). 

Explicitly, the payout rate (or indemnity) in any year, division, and season is calculated as 

follows: 

012345,�,
 � max	�0, :�;����5,�,

∗ ) � <�     (5) 

 

where :�;����5,�,

∗ ) is the response function yielding an index between 0 and 100 per cent 

that represents predicted livestock mortality conditional on ;����5,�,

∗ , and < is the strike 

level. The strike level is the value above which the contract will begin to indemnify and is 

selected by the insured at the inception of the contract. In the current IBLI implementation, 

the insured may select a strike level of either 10 or 15 per cent. The premium rate can then be 

calculated as the average of the historical predicted indemnities provided by the application 

of Equation 5 to the time series of ;����5,�,

∗ . Currently in the IBLI project, specific response 
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functions to predict livestock mortality from ;����5,�,

∗  are created for each division and 

season, based on collected livestock mortality data and taking into account the spatial 

relationships between divisions. The precise procedure for this will be described in a 

forthcoming paper by Woodard et al. (in preparation). Here, to show the impact of the longer 

time series availability on the premium rates, we use a generic response function that 

describes mortality as an exponential decay function of ;����5,�,

∗ , i.e.: 

� � :�;����5,�,

∗ ) � 3&�.>&�.?@�� !#,$,%

∗ A�.?�@�� !#,$,%
∗ �*   (6) 

 

where � represents predicted livestock mortality. As we used a strike level (<) of 10 per 

cent, according to Equation (5) and (6), an indemnity would be granted when ;����5,�,

∗  is 

smaller than -0.45 (i.e., when NDVI is smaller than the average value minus 0.45 standard 

deviations). 

 

 

5 Results 

5.1 Effect of division- and season-pooling on intercalibration 

Table 2 presents the results for the global DSP-model that maps division- and season-level 

NDVI_S* from GIMMS (slave) to NDVI_M* from any of the other NDVI products (master) 

for all seasons, years, and divisions. When jointly analyzing all 84 divisions and 18 seasons, 

the high ����  values (above 0.9591 for all products) indicate that NDVI* from GIMMS well 

correlatedcorrelates to that obtained from other products. When we remove the contribution 

related to the model’s ability to explain the variability in the spatial and seasonal dimensions 

(i.e., ������,�
�
� ), the values decrease to the range 0.789622-0.820672, depending on which 

dataset GIMMS is mapped to (Table 2). This value expresses the average capacity of the 

DSP-model to properly model the interannual variability of NDVI_M* for an individual 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 18

division and season. MODISA-NASA performs best according to ����  and ������,�
�
� , although 

differences with other products are small. MODIST-BOKU showed the poorest overall relation 

with GIMMS in terms of the ��-measures and the RMSEcv. A possible explanation for poorer 

agreement is that in this product the quality flags delivered with the original MODIS data are 

not considered, because Vuolo et al. (2012) assume that poor observations have low NDVI-

values and are corrected by the filtering technique. Nonetheless, During periods with more 

persistent cloud cover, this assumption may not be correct. For MODIST+A-BOKU the non-

consideration of quality flags is less of a problem due to the higher number of good NDVI 

observations available, as both the Terra and Aqua satellite are used. Figure 2 shows the 

corresponding scatterplots between NDVI* from GIMMS and the other products. All 

regression lines are below the 1:1 line, indicating that a positivenegative bias exists, i.e., 

NDVI* from GIMMS is on average higher than NDVI* from the other products. This 

positivedata bias (Table 2) is originated by both slope and intercept of the linear regression: 

in all cases slope is significantly different from 1 and intercept from 0 (p<0.01). This bias of 

GIMMS is also found for Europe (Atzberger et al., 2013). The calibration could efficiently 

remove the existing data bias judging from the small model bias (biascv) reported in Table 2. 

From the global DSP-model we may conclude that NDVI* from the operational NDVI 

products behave similar, and all have a strong correlation with GIMMS. 

 

As the insurance contract is applied at the division level, we evaluated if a less parsimonious 

division-specific model (Equation 2) could provide a more accurate calibration. Figure 3 

shows the frequency distribution of the division-level �	���  difference between applying the 

global DSP-model and the division-specific SP-models to individual divisions, in this case 

for MODISA-NASA. (MODISA-NASA is shown here as an example, as it performed best for the 

DSP-model, Table 2). For 69 of the 84 divisions, the SP-model performedyielded better 
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predictive performances than the DSP-model, i.e. the SP-model better captures the 

interannual variability of NDVI* for these divisions. Similar results were obtained for the 

other operational NDVI products (Table 3). It is beyond the scope of this paper to pinpoint 

the precise causes of such spatial heterogeneity in the relationship between NDVI products 

(see section 4.2 for possible explanations), but this finding clearly indicates that cross-

division differences in the relationship of NDVI* are important, and can better be accounted 

for usingconsequently the intercalibration can be achieved more accurately with a division-

specific model. Despite the large reduction in sample size (n=1,512 for DSP versus n=18 for 

SP), our cross-validated results show that, on average, the more specific SP-model is not 

overparameterized and GIMMS NDVI* can be more accurately mapped to NDVI* from the 

operational products using the SP-model, as compared to the DSP-model. 

 

The least parsimonious (n=9) division- and season-specific NP-model outperforms the SP-

model in more than 50 per cent of the divisions for most operational NDVI products (Table 3 

and Figure 4). This implies the presence of a seasonal effect on the relationship of NDVI* 

derived from GIMMS and operational products. This difference in performance was clustered 

in space, with the SP-model performing better in areas in the west (Turkana County) and the 

NP-model in eastern counties (Figure 54). The better performance of the NP-model in eastern 

counties coincides with areas that have a high dynamic range of NDVI during the SRSD 

season, but a lower dynamic range during the LRLD season (Figure 65). This suggests that if 

seasonal NDVI characteristics strongly diverge between both seasons, season-specific (NP) 

models are more effective in mapping NDVI* derived from GIMMS to that ofNDVI* from 

operational products. This could partly result from the impact of low signal-to-noise ratios on 

NDVI* during relatively dry seasons. For products other than MODISA-NASA (as in the 

example of Figure 54) the general pattern is the same despite some changes in the values (not 
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shown). Note that on average the SP-model performs better for the SRSD as compared to the 

LRLD season, possibly due to the reduced NDVI dynamic range during LRLD in many 

divisions.  

 

Figure 5a4a suggests that for each division a different model may be selected to obtain 

optimal relationships between NDVI* derived from different sources. Arguably, this may in 

fact be an option for creating the long time series of drought indices for each division. Which 

model should be used for each individual division would depend on the operational NDVI 

time series selected (i.e. Figure 5a4a may deviate for other products). Here, in order to select 

one single modelling solution, we pragmatically evaluated the magnitude of performance 

improvement achieved increasing the specificity of the modelling solution (and thus, 

reducing its parsimony). For the example of MODISA-NASA, only for three divisions the DSP-

model’s �	���  was more than 0.10 higher than that of the SP-model; for most divisions the SP-

model performed at least similar to DSP, if not much better (Figure 3). On the contrary, when 

comparing the SP- to the more specific NP-model, only 23 per cent of the divisions for 

LRLD, and 6 per cent for SRSD show an improved performance by over 0.10 (∆�	��� ) for NP-

models (see also Figure 4).. Therefore, given the relatively close similarity between NP- and 

SP-models performances, we chose to confine ourselves in the further analysis to the more 

parsimonious SP-model. The use of a single model-type would also imply a simpler and more 

consistent solution for insurance design. At the same time, we acknowledge however that no 

single models ‘wins’ across all divisions, and that the selection of different models for each 

division may be a better option based on purely empirical grounds. 

 

5.2 Comparison of NDVI products 
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Figure 76 shows the division-level �	���  results for the SP-model for all NDVI product pairs 

analysed. The first row depicts the relationship of NDVI* from GIMMS (slave) with NDVI* 

from all operational NDVI products. Although differences are small, on average for all 

divisions SPOT-VGT has the highest (0.85) and MODIST-BOKU the lowest �	���  (0.79). The 

spatial pattern of the relationship is very similar for all NDVI products in relation to GIMMS. 

�	��� -values below 0.50 are found for all products in the driest divisions of Turkana in the 

north-eastwest. The NDVI dynamic range is extremely low in this area (Figure 65), leading to 

low signal-to-noise ratios that negatively affect the relationships between products. This and 

moreover question the usability of the uncalibrated NDVI* for insurance purposes in these 

regions. The NDVI dynamic range is illustrated in Figure 87 for one poorly-performing 

division in Turkana (Lokichar), and a good-performing division in Moyale (Obbu). Despite 

the poor performances of some divisions, in many divisions the performance can be 

considered good. For example between GIMMS and SPOT-VGT, nearly half of all divisions 

have an �	���  above 0.90, and �	���  above 0.80 are found in 82 per cent of the divisions (Table 

4). eMODIST shows similar figures, while the other MODIS products demonstrate a 

somewhat poorer relationship with GIMMS. 

 

Compared to the relationship between operational NDVI products and GIMMS, the 

relationships among operational products showed a higher �	���  (Figure 76). This may be 

largely attributedattributable to the closer similarity of the spectral response functions of 

SPOT-VGT and MODIS. Because all MODIS products are based on the same sensor 

(although flown on two satellites), it is logical that the relationship between SPOT-VGT and 

MODIS shows stronger deviations as between individual MODIS products. Nonetheless, 

between SPOT-VGT and eMODIST, 73 per cent of all divisions have an �	���  above 0.95, and 

94 per cent above 0.90, indicating overall good comparability of NDVI*. MODIST-BOKU has 
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the poorest relationship with SPOT-VGT (21 and 67 per cent above �	��� ’s of 0.95 and 0.90, 

respectively), and also with other MODIS products. The different filtering used, and the fact 

that the quality flags are not used for this product, may explain this behaviour, given that  

MODIST-NASA (based on the same MOD13Q1 product) performs much better. Still we can 

conclude from Figure 76 that most operational NDVI products provide comparable NDVI* 

values for the majority of divisions. In an operational context of division-level drought 

monitoring, this finding would allow their interchangeable use, which can be important in 

case one satellite sensor fails.  

 

While the calibration performance in terms of �	���  informs us about the overall correlation 

between GIMMS and the operational products, a key interest for insurance payouts is 

whether different products are capable of identifying droughts and their relative severity. 

Despite relative poor calibration, it may still be possible that various NDVI products identify 

droughts similarly. As an example, Figure 98 compares the time series of z-scored NDVI* of 

GIMMS and three operational NDVI products for three divisions in Wajir County, each 

characterized by a different quality of the calibration against GIMMS (as indicated by the 

�	��� -values for the SP-model). For the Gurar-Bute division, we can observe that three major 

droughts are identified by all NDVI products: in order of decreasing severity these are 2011 

LRLD, 2005 LRLD, and 2010 SRSD. For Buna and Eldas (�	���  for GIMMS versus SPOT-

VGT of 0.82 and 0.66) five seasons are identified as dry by all products with z-scores below -

0.5. Despite that the major drought (2011 LRLD) is equally identified by all products, the 

severity ranking of these seasons differs slightly. Nonetheless, this comparison shows that 

even for relatively lower �	��� -values, which are not very common in our analysis (Table 4), 

we may attain a reasonably comparable estimate of drought occurrence. 
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Overall, our findings suggest that good perspectives exist for extending the operational NDVI 

products back in time to create longer time series of drought indices for livestock insurance in 

Kenya. The only exceptions are the few poorly-performing divisions, notably the very arid 

divisions in Turkana.  with low signal-to-noise ratios. 

 

5.3 Effect on premium rates 

Figure 109 shows the premium rates for the SRSD season as calculated using Equation (5) 

and (6) for the period 2001-2012 from eMODIST and for the period 1981-2012 using the 

intercalibrated data. The average premium rate across all divisions equals 2.54 per cent for 

the period 2001-2012, and 2.95 per cent for the longer period. For individual divisions, the 

premium rate estimate changes significantly when using the longer period of intercalibrated 

data. For example, in the Kirisia division in the east of Samburu County, the estimated 

premium rate more than doubled when using the 1981-2012 period (4.6%) as compared to 

using only 2001-2012 (2.2%). Higher rates imply a higher expected livestock mortality, and 

consequently a higher cost for the pastoralist to purchase the insurance (assuming equal risk-

loading by the insurer), but simultaneously this could benefit the sustainability of an 

insurance scheme from the insurer’s perspective. The standard deviation of the difference 

across all divisions is 1.14 per cent, which represents a significant amount of rate volatility in 

insurance terms. Such volatility may be expected in a dryland pastoralist system with strong 

deviations in asset losses. This example illustrates that the addition of 20 years of data has a 

strong impact on the premium.  

 

In statistical terms, the premium rates are expected to be more efficient and robust for a larger 

sample size (that is more seasons), provided that the relationship between mortality and the 

index is stable over time and that the intercalibration between sensors is effective. The 
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stronger statistical basis may motivate insurers to reduce the risk-loading (Biener, 2013), 

which could partly off-set the increased premiums that were calculated based on the longer 

time period for a large number of divisions. Further study should reveal whether the premium 

rates based on longer time series are also more efficient in ascertaining a sustainable 

insurance scheme. In this context, sustainable implies that in the long run, the scheme is 

attractive for both the insured and the insurer. In section 6 we will further discuss limitations 

of long time series, and their assumed stationarity, for effectively representing livestock 

mortality risks. 

 
 
6 Discussion 

Our study confirms that the GIMMS product is the most dissimilar among all NDVI products 

tested, a finding that can be attributed largely to the fact that the AVHRR sensor was not 

designed specifically for vegetation studies and consequently has much broader spectral 

bands for measuring red and NIR reflection (Trishchenko et al., 2002; Miura et al., 2006). We 

did not find evidence of markedly different performance among the operational NDVI 

products: pre-processing algorithms (i.e., temporal filtering) are partly responsible for 

differences that did occur. Our pragmatic approach of first focussing on the relevant 

aggregate drought indices (NDVI*), and subsequently comparing these across products, 

provided comparable measures across different NDVI products for most divisions of arid 

Kenya.  

 

Despite the high overall �	���  (>0.95) between GIMMS and operational products for the 

global DSP-model (divisions and seasons pooled), division-specific models better predicted 

the temporal variability in NDVI* of different sensors per division. This outcome is not trivial 

as the more specific models are tuned on a reduced sample size (as compared to the global 
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DSP-model) and are thus more exposed to potential over-fitting problems. This finding is 

supported by other studies that indicate location-specific dependencies on the relationship 

between NDVI derived from different sensors (e.g., Miura et al., 2006; Swinnen and 

Veroustraete, 2008). Except for approximately 10 to 20 per cent of the divisions that have a 

very limited NDVI dynamic range, seasons with poor vegetation characteristics (due to 

drought conditions) could be properly identified by all NDVI products using the season-

pooled division-specific SP-model. Further disaggregation achieved by the NP-model, where 

the calibration is performed by each division and separately for the two seasons of interest, 

yielded relatively small improvements. in prediction for more than 50 per cent of the 

divisions. Our results demonstrate that longer operational time series of the drought index can 

effectively be constructed for most divisions by mapping NDVI* from GIMMS to that of 

operational products. We fully acknowledge, however, that other approaches to achieve this 

may be identified, and that further improvements can be envisaged. Here we non-

exhaustively discuss a few possible improvements or adaptations to our approach. 

 

First, for several operational NDVI products we have more years of overlap available with 

the GIMMS dataset than the 18 seasons between October 2002 and September 2011 used 

here. These 18 seasons overlap between all products evaluated in our study, and were 

selected to provide a fair comparison among products. However, for example for SPOT-

VGT, eight more seasons are available. Incorporating these seasons in the regression may 

improve the estimation of the regression coefficients, and thus results in improved 

consistency of the combined long-term time series. 

 

Second, the observed deviation from linearity in the relationship between GIMMS and other 

NDVI products may be approached using a quadratic regression (see also Miura et al., 
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2006)Second to test the trade-off between the benefit of a potentially more appropriate model 

and the drawbacks of an increased parameterization. 

 

Third, besides the three calibration options that we tested here (Equation 1-3), other 

intermediate levels of division- and season-pooling of NDVI* can be envisaged and may have 

benefits. For example, all divisions within a county could be used in a single regression 

equation. Within that county, depending if the characteristics of the two seasons are very 

distinct, also the seasons could be separately analysed. Another intermediate possibility 

would be to use all divisions simultaneously in a fixed effects panel regression model, in 

which a single slope is obtained for all divisions and different intercepts for each, thus 

reducing the amount of parameters to be estimated as compared to SP-models while 

increasing sample size (Baltagi, 2008). A more drastic consideration is whether we should 

stick to division-boundaries, or use a better ecological stratification of the area, possibly 

based on NDVI series as well (de Bie et al., 2011). For IBLI this would not be a good option, 

given that livestock mortality data are available at the division level, and divisions are for 

insurers and pastoralists the most logical unit for having the same insurance premiums and 

payout. Alternatively, divisions could be pooled based on ecological characteristics, for 

example through similarity-based clustering of their average NDVI profiles. The main 

advantage of this would be the increase of the sample size, possibly leading to more reliable 

estimates of the regression coefficients, while still keeping homogeneity of insurance contract 

within each division. While further empirical testing of different pooling levels could lead to 

slight improvements of calibration performances, it is likely that bigger benefit can be 

obtained by improving the design of the drought index itself. 
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Two ways to improve the drought index (currently defined as the z-score of the division 

spatial average of the mean NDVI over two fixed time periods corresponding to the growing 

seasons, and jointly covering a whole calendar year without gaps) can be envisaged. A first 

way would be through adapting the spatial aggregation step. Currently all pixels within a 

division are incorporated when calculating NDVI*. However, many pixels may have low 

signal-to-noise ratios (because vegetation is absent throughout the year, for example) 

affecting the calibration reliability. In addition, these pixels may not represent locations 

where livestock is actually grazing. Such pixels are less relevant concerning their effect on 

livestock conditions and could be excluded 1) by setting a threshold on the pixel’s mean 

NDVI and/or its temporal variability, or 2) by incorporating land cover maps such as 

AfriCover (e.g., Genovese et al., 2001; Rojas et al., 2011). 

 

A second way to enhance the performance of the drought index, both in the construction of 

the long term archive and in the actual application of the index in the insurance scheme, 

could be through changing the definition of the seasons under consideration. Currently, in 

analogy to Chantarat et al. (2013) and the current IBLI design, the LRLD and SRSD together 

cover a full year. This implies, however, that a significant proportion of each season contains 

a (relatively) dry period. During this period, biomass is not developing and consequently 

NDVI values provide information of limited relevance regarding grazing opportunities for 

livestock. A better and more realistic tuning of the considered period is thus also expected to 

increase the correlation of the index with actual livestock mortality and therefore to further 

reduce the insurance basis risk. Moreover, given that exposure of bare soil impacts reflection 

differently depending on the spectral response functions, low biomass conditions tend to 

decrease the signal-to-noise ratio of the NDVI measurement, and as such decrease the 

comparability of NDVI* across sensors. A straightforward solution could be to shorten the 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 28

seasons by removing the final one to three months of each season that is consistently 

dominated by dry conditions (see also Figure 87). However, the optimal time period for 

aggregation could change from division to division. A more appropriate approach could rely 

on the automated identification of start- and end-of-season from the NDVI time series at 

pixel-level (Meroni et al., 2013; Vrieling et al., 2013) or aggregated per division (Rojas et al., 

2011; Vrieling et al., 2011) or aggregated per division (Rojas et al., 2011; Vrieling et al., 

2011). 

 

This study started from the premise that longer time series can better capture the full range of 

climatic variability and the related drought probability, resulting in improved pricing of 

insurance contracts. This premise is based on the fact that stationarity of NDVI can be 

assumed over the considered period. We should place two critical notes however. First, 

human-induced land use changes within the past 30 years (e.g., Brink and Eva, 2009) may 

have changed NDVI levels, which do not relate to drought. Second, if trends are present in 

the NDVI data (possibly due to climatic changes), the longer record may not help to better 

define drought probability for the upcoming season(s), unless the trends are accounted for. 

While land use could be relatively stable, and trends may be absent for many divisions, more 

detailed analysis may be needed for future use of long NDVI records in index-insurance. In 

this respect, comparison with other indices could also be explored, for example using tree 

ring data (Bell et al., 2013) that are now available for some parts of Africa (Gebrekirstos et 

al., 2009). 

 

This discussion contends that ample scope exists for further improving the remote sensing 

component of the IBLI project. While we achieved to compare several NDVI sources, and 

provided regression coefficients for creating longer time series of the NDVI* drought index, 
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the final usefulness of the index (as derived from different sources) can only be ascertained 

when it can effectively model what is insured, i.e., livestock losses. Although drought is the 

main cause of livestock mortality in arid Kenya, above-normal wet conditions may also 

trigger livestock diseases such as East Coast Fever (Homewood et al., 2006), and Rift Valley 

Fever (Anyamba et al., 2009). While this is somewhat acknowledged in the current IBLI 

scheme through the introduction of  a quadratic term (Equation 6), better predictions of such 

disease outbreaks may be possible. In this regard, NDVI series could also provide useful 

information (e.g., Norval et al., 1991; Anyamba et al., 2009; Trevennec et al., 2012). 

Upcoming household surveys within the IBLI project should reveal the importance of these 

diseases for livestock mortality in the region, and efforts are underway within the 

International Livestock Research Institute (and elsewhere) for NDVI-aided outbreak 

prediction. Eventually, NDVI-derived outbreak probabilities could be incorporated in the 

IBLI design to better account for increased mortality during above-normal wet conditions as 

well. 

 

7 Conclusions 

Index-based livestock insurance requires an accurate estimate of livestock mortality from an 

index to determine the insurance premium, and up-to-date information for determining 

payouts. Given that most mortality is drought-related, spatially- and temporally-aggregated 

NDVI is used as drought index input to livestock insurance in Kenya. With the aim of 

creating a long (>30 year) operational record of division-level seasonal drought indices for 

the arid lands in Kenya, we compared the non-operational 30-year GIMMS AVHRR record 

with six operational NDVI products (from MODIS and SPOT-VGT) and three modelling 

options. Based on cross-validated results, we conclude that division-specific models are the 

most effective in linking the division-level variability of the drought index (NDVI*) between 
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the various products. In relation to the long-term GIMMS record, the SP-model explained 

over 80 per cent of the NDVI* variance for more than 80 per cent of all divisions for SPOT-

VGT and eMODIST. This implies that for most divisions, good scope existexists for 

historically extending the aggregated drought index, thus providing a longer operational 

record for insurance purposes. Using a longer record has a significant influence on the 

insurance premium rates, as shown in this paper. We defined several possible future 

improvements to the drought index, which may also have a positive impact on the 

comparability of the resulting drought index time series. 

 

While our work specifically focussed on the demands of the IBLI project in Kenya, the need 

for long time series of drought indices is not specific to this project. Although not always 

effective or successful (Binswanger-Mkhize, 2012), index-based insurance of crop or 

livestock is seen by many as having a great potential for increasing agricultural production 

among smallholder farmers (Hazell and Hess, 2010; Coe and Stern, 2011), and many 

initiatives and pilot projects currently exist. Despite limitations (Turvey and McLaurin, 

2012), NDVI series are frequently used or considered in these projects, including for example 

for livestock insurance in Mongolia (Mahul and Skees, 2007) and the ongoing project 

“Evaluating remote sensing for index insurance” of the Weather Risk Management Facility 

(http://www.ifad.org/ruralfinance/wrmf/). Given the need for long time series for insurance 

design and pricing, our current work may further guide other index-insurance projects that 

seek to combine NDVI series. 
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Appendix A: Detailed description of NDVI data sets 

 

A.1 GIMMS AVHRR 

To obtain long time series of NDVI data, we used the 8-km resolution NDVI dataset that was 

constructed by the GIMMS project. This 15-day (two maximum-value composites per month) 

product covers July 1981 to December 2011. The AVHRR sensors used to construct the 

dataset were flown on six satellites. The GIMMS AVHRR dataset has been corrected for 

factors that do not relate to changes in vegetation greenness, and the latest version (NDVI3g) 

applies an improved cloud masking as compared to older versions of the GIMMS dataset 

(Tucker et al., 2005; Pinzón and Tucker, 2013). 

 

A.2 SPOT-VGT 

We obtained ten-daily SPOT-VGT NDVI composites (S10 product) with a 1-km spatial 

resolution for 1998-present through the Flemish Institute for Technological Research (VITO). 

Three composites cover exactly one month, i.e. for day 1-10, 11-20, and 21-last day of each 

month. Following atmospheric correction (Rahman and Dedieu, 1994),  a constrained view-

angle maximum value composite rule is applied. For Africa, the data are available in near-

real time through the VGT4Africa and GEONETCast projects (Jacobs et al., 2008). We used 

the quality flags provided with the data to discard observations affected by clouds or 

shadows, or that otherwise have a bad radiometric quality in the red or NIR band. 

 

A.3 MODIS 

We used two series of 16-day NDVI constrained view-angle maximum value composites 

from the 250-m resolution global MODIS vegetation indices product Collection 5, i.e. for 

Terra (MOD13Q1) and for Aqua (MYD13Q1). Similarly to the SPOT-VGT product, the 
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maximum-value compositing employed for these products selects the highest NDVI values, 

but constrains the candidate pixels by the view angle (Huete et al., 2002). We refer to this 

Terra-derived product here as MODIST-NASA and the Aqua-derived product as MODISA-NASA. 

Quality flags provided with the data were used to mask out unreliable observations (i.e., 

MODIS quality flag greater than 1 and usefulness flag greater than 5). 

 

A.4 MODIS – Whittaker filter 

The University of Natural Resources and Applied Life Sciences (BOKU) in Vienna, Austria, 

provides on-demand temporally-filtered MODIS NDVI composites, based on the Terra- and 

Terra plus Aqua-derived products described above (section 3A.3). Their service includes 

temporal filtering, mosaicking, sub-setting, and reprojection, and can deliver data requests 

within a day, including near-real time acquisitions (Vuolo et al., 2012). The temporal filtering 

is achieved with a modified Whittaker filter (Atzberger and Eilers, 2011). This least squares 

approach incorporates a ‘penalty’ criterion regarding the smoothness of the resulting NDVI 

profile. Currently, MODIS quality indicators are not used to mask NDVI observations prior 

to filtering, following the assumption that poor observations have low NDVI values and will 

be corrected by the temporal filter (Vuolo et al., 2012). Exploiting the availability of NDVI 

products from Terra and Aqua platforms (both originally composited from NASA at 16-day, 

but with temporal compositing window shifted of 8 day), BOKU provides both a standard 16-

day composite based on Terra only (here referred to as MODIST-BOKU) and Terra plus Aqua 

combined product produced every 8 days (here MODIST+A-BOKU). The product based on Aqua 

only was not considered in this paper, but is also processed by BOKU. 

 

A.5 eMODIS 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 37

The eMODIS data (e for ‘enhanced’, ‘expedited’, and ‘expandable’) for Africa contain 10-

day NDVI composites at 250-m resolution that are constructed using similar algorithms as 

the Collection-5 MODIS products (Jenkerson et al., 2010). The United States Geological 

Survey (USGS) has produced these composites since 2010 to better respond to user needs 

(regarding for example projections and compositing periods). Both historical archive data and 

near-real time composites are freely available online. The 10-day composites are produced 

every five days resulting in six composites per month. Here we only took the composites that 

cover days 1-10, 11-20, and 21-last day of each month, i.e. the same composite periods as for 

SPOT-VGT. While unfiltered composites can be obtained for the full Africa window, for this 

study we used the filtered eMODIS product for the East Africa window that is employed 

operationally for food security monitoring activities of FEWS-NET. The temporal filtering is 

based on a weighted least-squares regression approach that gives highest weights to local 

peaks in the NDVI profile, and lowest weights to local valleys (Swets et al., 1999). The 

filtered data are available for January 2001 until present. For clarity in this paper we add 

subscript “T” (for Terra) to refer to this dataset, i.e., eMODIST.  
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Tables 

Table 1. Main characteristics of the NDVI products used in this study. 

 

 
*Note: 
 
*  The names refer to the abbreviations for the datasets used in this article 
** We here indicate here if the original data sources were filtered. Unfiltered datasets were smoothed by us 
using an iterative Savitzky-Golay filter (see section 4.1).  

Table 2. Statistics from the global DSP-model, where division- and season-level NDVI* from 

GIMMS is mapped to NDVI* of each of the six datasets listed in the table. ������,�
�
�  is an 

aggregate measure of the temporal prediction capability for each division and season (section 

4.3).  

  

Name dataset* Sensor Platform Data 
provider 

Start Resolution 
(m) 

Composite 
period 
(days) 

Temporal filtering** 

GIMMS AVHRR NOAA  
(7 satellites) 

NASA 1981  
(-2011) 

8,000 15 - 

SPOT-VGT VEGETATION SPOT 4 and 5 VITO 1998 1,000 10 - 
MODIST-NASA MODIS Terra NASA 2000 250 16 - 
MODISA-NASA MODIS Aqua NASA 2002 250 16 - 
MODIST-BOKU MODIS Terra BOKU 2000 250 16 Atzberger and Eilers (2011) 
MODIST+A-BOKU MODIS Terra+Aqua  BOKU 2002 250 8 Atzberger and Eilers (2011) 
eMODIST MODIS Terra USGS 2001 250 10 Swets et al. (1999) 

Name dataset CDEF  CDE�GH,GI�
F  CJKLDE data bias MNHOP	QRSIDE

(x1,000) 
SPOT-VGT 0.921 0.647 0.029 -0.065 0.136 
MODIST-NASA 0.923 0.662 0.031 -0.039 0.122 
MODISA-NASA 0.929 0.672 0.030 -0.044 0.142 
MODIST-BOKU 0.917 0.622 0.033 -0.037 0.110 
MODIST+A-BOKU 0.924 0.652 0.031 -0.046 0.127 
eMODIST 0.922 0.658 0.030 -0.058 0.145 
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Table 3. Percentage of the divisions where the pooled models (DSP and SP) outperform the 

division- and season-specific models (SP and NP) outperform the pooled models (DSP and 

SP), respectively.  

 

 

 

 

 

 

 

 

Table 4. Percentage of the divisions where �	���  from the SP-model (taking GIMMS as the 

slave to be mapped to any of the datasets listed below) is higher than the indicated thresholds.  

 

Name dataset CDEF �KT� U CDEF �VKT� CDEF �WT� U CDEF �KT� 
  LRLD SRSD 
SPOT-VGT 88 44 51 
MODIST-NASA 82 61 57 
MODISA-NASA 82 68 54 
MODIST-BOKU 76 63 62 
MODIST+A-BOKU 79 61 56 
eMODIST 89 58 50 

Name dataset CDEF (SP) 
 >0.50 >0.70 >0.80 >0.90 >0.95 
SPOT-VGT 96 89 82 46 11 
MODIST-NASA 95 90 77 38 6 
MODISA-NASA 94 88 77 38 5 
MODIST-BOKU 94 82 70 8 1 
MODIST+A-BOKU 95 86 77 30 4 
eMODIST 95 89 81 46 11 


