8 research outputs found

    Haploinsufficiency as a Foreground Pathomechanism of Poirer-Bienvenu Syndrome and Novel Insights Underlying the Phenotypic Continuum of CSNK2B-Associated Disorders

    Get PDF
    CSNK2B encodes for the regulatory subunit of the casein kinase II, a serine/threonine kinase that is highly expressed in the brain and implicated in development, neuritogenesis, synaptic transmission and plasticity. De novo variants in this gene have been identified as the cause of the Poirier-Bienvenu Neurodevelopmental Syndrome (POBINDS) characterized by seizures and variably impaired intellectual development. More than sixty mutations have been described so far. However, data clarifying their functional impact and the possible pathomechanism are still scarce. Recently, a subset of CSNK2B missense variants affecting the Asp32 in the KEN box-like domain were proposed as the cause of a new intellectual disability-craniodigital syndrome (IDCS). In this study, we combined predictive functional and structural analysis and in vitro experiments to investigate the effect of two CSNK2B mutations, p.Leu39Arg and p.Met132LeufsTer110, identified by WES in two children with POBINDS. Our data prove that loss of the CK2beta protein, due to the instability of mutant CSNK2B mRNA and protein, resulting in a reduced amount of CK2 complex and affecting its kinase activity, may underlie the POBINDS phenotype. In addition, the deep reverse phenotyping of the patient carrying p.Leu39Arg, with an analysis of the available literature for individuals with either POBINDS or IDCS and a mutation in the KEN box-like motif, might suggest the existence of a continuous spectrum of CSNK2B-associated phenotypes rather than a sharp distinction between them

    Circular RNAs Could Encode Unique Proteins and Affect Cancer Pathways

    Get PDF
    CircRNAs constitute a novel class of RNA, generally considered as non-coding RNAs; nonetheless, their coding potential has been under scrutiny. In this work, we systematically explored the predicted proteins of more than 160,000 circRNAs detected by exome capture RNA-sequencing and collected in the MiOncoCirc pan-cancer compendium, including normal and cancer samples from different types of tissues. For the functional evaluation, we compared their primary structure and domain composition with those derived from the same linear mRNAs. Among the 4362 circRNAs potentially encoding proteins with a unique primary structure and 1179 encoding proteins with a novel domain composition, 183 were differentially expressed in cancer. In particular, eight were associated with prognosis in acute myeloid leukemia. The functional classification of the dysregulated circRNA-encoded polypeptides showed an enrichment in the heme and cancer signaling, DNA-binding, and phosphorylation processes, and disclosed the roles of some circRNA-based effectors in cancer

    What Is the Exact Contribution of PITX1 and TBX4 Genes in Clubfoot Development? An Italian Study

    Get PDF
    Congenital clubfoot is a common pediatric malformation that affects approximately 0.1% of all births. 80% of the cases appear isolated, while 20% can be secondary or associated with complex syndromes. To date, two genes that appear to play an important role are PTIX1 and TBX4, but their actual impact is still unclear. Our study aimed to evaluate the prevalence of pathogenic variants in PITX1 and TBX4 in Italian patients with idiopathic clubfoot. PITX1 and TBX4 genes were analyzed by sequence and SNP array in 162 patients. We detected only four nucleotide variants in TBX4, predicted to be benign or likely benign. CNV analysis did not reveal duplications or deletions involving both genes and intragenic structural variants. Our data proved that the idiopathic form of congenital clubfoot was rarely associated with mutations and CNVs on PITX1 and TBX4. Although in some patients, the disease was caused by mutations in both genes; they were responsible for only a tiny minority of cases, at least in the Italian population. It was not excluded that other genes belonging to the same TBX4-PITX1 axis were involved, even if genetic complexity at the origin of clubfoot required the involvement of other factors

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition

    The Genetic Diagnosis of Ultrarare DEEs: An Ongoing Challenge

    Get PDF
    Epileptic encephalopathies (EEs) and developmental and epileptic encephalopathies (DEEs) are a group of severe early-onset neurodevelopmental disorders (NDDs). In recent years, next-generation equencing (NGS) technologies enabled the discovery of numerous genes involved in these conditions. However, more than 50% of patients remained undiagnosed. A major obstacle lies in the high degree of genetic heterogeneity and the wide phenotypic variability that has characterized these disorders. Interpreting a large amount of NGS data is also a crucial challenge. This study describes a dynamic diagnostic procedure used to investigate 17 patients with DEE or EE with previous negative or inconclusive genetic testing by whole-exome sequencing (WES), leading to a definite diagnosis in about 59% of participants. Biallelic mutations caused most of the diagnosed cases (50%), and a pathogenic somatic mutation resulted in 10% of the subjects. The high diagnostic yield reached highlights the relevance of the scientific approach, the importance of the reverse phenotyping strategy, and the involvement of a dedicated multidisciplinary team. The study emphasizes the role of recessive and somatic variants, new genetic mechanisms, and the complexity of genotype&ndash;phenotype associations. In older patients, WES results could end invasive diagnostic procedures and allow a more accurate transition. Finally, an early pursued diagnosis is essential for comprehensive care of patients, precision approach, knowledge of prognosis, patient and family planning, and quality of life

    Seventy-five genetic loci influencing the human red blood cell

    Get PDF
    Stress-related psychiatric disorders across the life spa
    corecore