20 research outputs found

    Study of corrosion, crystal structure and magnetic properties on OL52 and OL52.4 steels in different seawaters

    Get PDF
    The corrosion of OL 52 and OL52.4 steels exposed to seawaters (Black, Aegean and Mediterranean Sea) has been investigated by weight loss method and the corresponding corrosion rates in the three sea waters are calculated. Before and after immersion in the corrosive medium micrographic images are obtained. XRD and ponderomotive methods have been used to determine the influence of the seawaters corrosion processes on the structure and magnetization of the studied steels. Obtained results show that both OL52 and OL52.4 steels have good corrosion resistance in the studied seawaters

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Bucureºti) ♦ 60♦ Nr

    No full text

    Study of corrosion, crystal structure and magnetic properties on OL52 and OL52.4 steels in different seawaters

    No full text
    503-510The corrosion of OL 52 and OL52.4 steels exposed to seawaters (Black, Aegean and Mediterranean Sea) has been investigated by weight loss method and the corresponding corrosion rates in the three sea waters are calculated. Before and after immersion in the corrosive medium micrographic images are obtained. XRD and ponderomotive methods have been used to determine the influence of the seawaters corrosion processes on the structure and magnetization of the studied steels. Obtained results show that both OL52 and OL52.4 steels have good corrosion resistance in the studied seawaters

    Investigation of Long-Term Corrosion of CoCrMoW Alloys under Simulated Physiological Conditions

    No full text
    The corrosion resistance of two cast CoCr-based alloys with different amounts of chromium and with different alloying elements in the bulk composition of the alloy was assessed. In this study, we investigated the corrosion behavior of Co21Cr8Mo7W and Co29Cr7W by open-circuit potential (OCP), potentiodynamic polarization (PP) and electrochemical impedance spectroscopy (EIS) in 0.1 M phosphate buffer solution (PBS) at 37 °C with long immersion times. After 1000 h of immersion, the corrosion current density (icor), estimated from anodic polarization tests, was lower for the Co21Cr8Mo7W (i.e., 49 nA cm−2) alloy compared to the Co29Cr7W alloy (180 nA cm−2). As regards the corrosion potential (Ecor), a greater value was observed for Co21Cr8Mo7W (i.e., −59 mV vs. Ag/AgCl) compared to Co29Cr7W (i.e., −114 mV vs. Ag/AgCl). Microstructure analysis before and after immersion revealed the formation of a more compact passive film on the Co21Cr8Mo7W alloy, suggesting superior corrosion resistance compared to Co29Cr7W. These findings suggest better corrosion resistance for the film formed on the alloy containing lower amounts of Cr and two alloying elements, Mo and W. These results are promising in terms of medical applications because they open the door to new strategies for obtaining alloys with lower chromium content and with more protective anti-corrosion properties

    Electrochemical behaviour of ternary Ni-Zn-P thin films deposition on steel substrate

    Get PDF
    572-577Ternary Ni-Zn-P alloy thin films  with a thickness of 15-20 μm are considered as a replacement for cadmium sacrificial coatings for anticorrosive protection of steel parts working in highly corrosive media. Anticorrosive Ni-Zn-P thin films has been electrochemically deposited from aqueous sulphate solutions on carbon steel substrate. The influence of bath composition (variable ZnSO4·7H2O contents) and electrodeposition type (potentiostatic or galvanostatic) on physical-chemical and corrosion characteristics of obtained films have been studied. Films are characterized by energy dispersive analysis (EDAX) and scanning electron microscopy (SEM). The corrosion tests are performed in 3% NaCl solution with optimal resulting values of -916.2 mV vs. saturated calomel electrode (SCE) for the corrosion potential and 13.4 μA·cm-2 for the corrosion current density. The calculated value for the corrosive attack protection efficiency is 67.7%
    corecore