36 research outputs found

    Interpretation of Strong Short-Term Central Perturbations in the Light Curves of Moderate-Magnification Microlensing Events

    Get PDF
    To improve the planet detection efficiency, current planetary microlensing experiments are focused on high-magnification events searching for planetary signals near the peak of lensing light curves. However, it is known that central perturbations can also be produced by binary companions and thus it is important to distinguish planetary signals from those induced by binary companions. In this paper, we analyze the light curves of microlensing events OGLE-2007-BLG-137/MOA-2007-BLG-091, OGLE-2007-BLG-355/MOA-2007-BLG-278, and MOA-2007-BLG-199/OGLE-2007-BLG-419, for all of which exhibit short-term perturbations near the peaks of the light curves. From detailed modeling of the light curves, we find that the perturbations of the events are caused by binary companions rather than planets. From close examination of the light curves combined with the underlying physical geometry of the lens system obtained from modeling, we find that the short time-scale caustic-crossing feature occurring at a low or a moderate base magnification with an additional secondary perturbation is a typical feature of binary-lens events and thus can be used for the discrimination between the binary and planetary interpretations.Comment: 17 pages, 4 figures, 1 tabl

    Characterizing Low-Mass Binaries From Observation of Long Time-scale Caustic-crossing Gravitational Microlensing Events

    Get PDF
    Despite astrophysical importance of binary star systems, detections are limited to those located in small ranges of separations, distances, and masses and thus it is necessary to use a variety of observational techniques for a complete view of stellar multiplicity across a broad range of physical parameters. In this paper, we report the detections and measurements of 2 binaries discovered from observations of microlensing events MOA-2011-BLG-090 and OGLE-2011-BLG-0417. Determinations of the binary masses are possible by simultaneously measuring the Einstein radius and the lens parallax. The measured masses of the binary components are 0.43 MM_{\odot} and 0.39 MM_{\odot} for MOA-2011-BLG-090 and 0.57 MM_{\odot} and 0.17 MM_{\odot} for OGLE-2011-BLG-0417 and thus both lens components of MOA-2011-BLG-090 and one component of OGLE-2011-BLG-0417 are M dwarfs, demonstrating the usefulness of microlensing in detecting binaries composed of low-mass components. From modeling of the light curves considering full Keplerian motion of the lens, we also measure the orbital parameters of the binaries. The blended light of OGLE-2011-BLG-0417 comes very likely from the lens itself, making it possible to check the microlensing orbital solution by follow-up radial-velocity observation. For both events, the caustic-crossing parts of the light curves, which are critical for determining the physical lens parameters, were resolved by high-cadence survey observations and thus it is expected that the number of microlensing binaries with measured physical parameters will increase in the future.Comment: 8 pages, 5 figures, 4 table

    Frequency of Solar-Like Systems and of Ice and Gas Giants Beyond the Snow Line from High-Magnification Microlensing Events in 2005-2008

    Get PDF
    We present the first measurement of planet frequency beyond the "snow line" for planet/star mass-ratios[-4.5<log q<-2]: d^2 N/dlog q/dlog s=(0.36+-0.15)/dex^2 at mean mass ratio q=5e-4, and consistent with being flat in log projected separation, s. Our result is based on a sample of 6 planets detected from intensive follow-up of high-mag (A>200) microlensing events during 2005-8. The sample host stars have typical mass M_host 0.5 Msun, and detection is sensitive to planets over a range of projected separations (R_E/s_max,R_E*s_max), where R_E 3.5 AU sqrt(M_host/Msun) is the Einstein radius and s_max (q/5e-5)^{2/3}, corresponding to deprojected separations ~3 times the "snow line". Though frenetic, the observations constitute a "controlled experiment", which permits measurement of absolute planet frequency. High-mag events are rare, but the high-mag channel is efficient: half of high-mag events were successfully monitored and half of these yielded planet detections. The planet frequency derived from microlensing is a factor 7 larger than from RV studies at factor ~25 smaller separations [2<P<2000 days]. However, this difference is basically consistent with the gradient derived from RV studies (when extrapolated well beyond the separations from which it is measured). This suggests a universal separation distribution across 2 dex in semi-major axis, 2 dex in mass ratio, and 0.3 dex in host mass. Finally, if all planetary systems were "analogs" of the Solar System, our sample would have yielded 18.2 planets (11.4 "Jupiters", 6.4 "Saturns", 0.3 "Uranuses", 0.2 "Neptunes") including 6.1 systems with 2 or more planet detections. This compares to 6 planets including one 2-planet system in the actual sample, implying a first estimate of 1/6 for the frequency of solar-like systems.Comment: 42 pages, 10 figure

    A saturated map of common genetic variants associated with human height.

    Get PDF
    Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries

    Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting

    No full text
    Purpose Biological sequestration can increase the carbon stocks of non-atmospheric reservoirs (e.g. land and landbased products). Since this contained carbon is sequestered from, and retained outside, the atmosphere for a period of time, the concentration of CO2 in the atmosphere is temporarily reduced and some radiative forcing is avoided. Carbon removal from the atmosphere and storage in the biosphere or anthroposphere, therefore, has the potential to mitigate climate change, even if the carbon storage and associated benefits might be temporary. Life cycle assessment (LCA) and carbon footprinting (CF) are increasingly popular tools for the environmental assessment of products, that take into account their entire life cycle. There have been significant efforts to develop robust methods to account for the benefits, if any, of sequestration and temporary storage and release of biogenic carbon. However, there is still no overall consensus on the most appropriate ways of considering and quantifying it. Method This paper reviews and discusses six available methods for accounting for the potential climate impacts of carbon sequestration and temporary storage or release of biogenic carbon in LCA and CF. Several viewpoints and approaches are presented in a structured manner to help decision-makers in their selection of an option from competing approaches for dealing with timing issues, including delayed emissions of fossil carbon. Results Key issues identified are that the benefits of temporary carbon removals depend on the time horizon adopted when assessing climate change impacts and are therefore not purely science-based but include value judgments. We therefore did not recommend a preferred option out of the six alternatives presented here.JRC.H.8-Sustainability Assessmen

    Challenging Social Injustice in Superdiverse Contexts Through Activist Languages Education

    No full text
    In a current world of rapid change and immense global mobility, communities are experiencing unprecedented increases in population diversity that have dramatically heightened the challenge of ensuring social justice for linguistic minorities, including migrants, refugees, and people on the move, with implications for society as a whole. This chapter explores the rhetoric of related policies and practices and the ways in which they respond to the needs of superdiverse communities. The cases of the UK, Europe, and Australia, which all claim their multicultural status and multiculturalism as an important community resource, are discussed. Through an exploration of current research, the effectiveness of languages education policy and planning (LPP) is critiqued to provide a new paradigm that has the capacity to bring attention to and eliminate social injustice in linguistically diverse communities. The chapter argues for the nurturing of new spaces of language use that challenge the monolingual habitus and which can engage the collective autonomy of communities themselves. It conceptualizes how activist languages education can build community capacity and achieve socially just outcomes, thus simultaneously providing a better space for multilingualism and a foundation for peace
    corecore