160 research outputs found

    Early changes in biochemical markers of bone formation during teriparatide therapy correlate with improvements in vertebral strength in men with glucocorticoid-induced osteoporosis

    Get PDF
    Summary: Changes of the bone formation marker PINP correlated positively with improvements in vertebral strength in men with glucocorticoid-induced osteoporosis (GIO) who received 18-month treatment with teriparatide, but not with risedronate. These results support the use of PINP as a surrogate marker of bone strength in GIO patients treated with teriparatide. Introduction: To investigate the correlations between biochemical markers of bone turnover and vertebral strength estimated by finite element analysis (FEA) in men with GIO. Methods: A total of 92 men with GIO were included in an 18-month, randomized, open-label trial of teriparatide (20 μg/day, n = 45) and risedronate (35 mg/week, n = 47). High-resolution quantitative computed tomography images of the 12th thoracic vertebra obtained at baseline, 6 and 18 months were converted into digital nonlinear FE models and subjected to anterior bending, axial compression and torsion. Stiffness and strength were computed for each model and loading mode. Serum biochemical markers of bone formation (amino-terminal-propeptide of type I collagen [PINP]) and bone resorption (type I collagen cross-linked C-telopeptide degradation fragments [CTx]) were measured at baseline, 3 months, 6 months and 18 months. A mixed-model of repeated measures analysed changes from baseline and between-group differences. Spearman correlations assessed the relationship between changes from baseline of bone markers with FEA variables. Results: PINP and CTx levels increased in the teriparatide group and decreased in the risedronate group. FEA-derived parameters increased in both groups, but were significantly higher at 18 months in the teriparatide group. Significant positive correlations were found between changes from baseline of PINP at 3, 6 and 18 months with changes in FE strength in the teriparatide-treated group, but not in the risedronate group. Conclusions: Positive correlations between changes in a biochemical marker of bone formation and improvement of biomechanical properties support the use of PINP as a surrogate marker of bone strength in teriparatide-treated GIO patients

    New Suggestions for the Mechanical Control of Bone Remodeling

    Get PDF
    Bone is constantly renewed over our lifetime through the process of bone (re)modeling. This process is important for bone to allow it to adapt to its mechanical environment and to repair damage from everyday life. Adaptation is thought to occur through the mechanosensitive response controlling the bone-forming and -resorbing cells. This report shows a way to extract quantitative information about the way remodeling is controlled using computer simulations. Bone resorption and deposition are described as two separate stochastic processes, during which a discrete bone packet is removed or deposited from the bone surface. The responses of the bone-forming and -resorbing cells to local mechanical stimuli are described by phenomenological remodeling rules. Our strategy was to test different remodeling rules and to evaluate the time evolution of the trabecular architecture in comparison to what is known from μ-CT measurements of real bone. In particular, we tested the reaction of virtual bone to standard therapeutic strategies for the prevention of bone deterioration, i.e., physical activity and medications to reduce bone resorption. Insensitivity of the bone volume fraction to reductions in bone resorption was observed in the simulations only for a remodeling rule including an activation barrier for the mechanical stimulus above which bone deposition is switched on. This is in disagreement with the commonly used rules having a so-called lazy zone

    Changes in socioeconomic resources and mental health after the second COVID-19 wave (2020-2021): a longitudinal study in Switzerland

    Get PDF
    BACKGROUND: During the 2020/2021 winter, the labour market was under the impact of the COVID-19 pandemic. Changes in socioeconomic resources during this period could have influenced individual mental health. This association may have been mitigated or exacerbated by subjective risk perceptions, such as perceived risk of getting infected with SARS-CoV-2 or perception of the national economic situation. Therefore, we aimed to determine if changes in financial resources and employment situation during and after the second COVID-19 wave were prospectively associated with depression, anxiety and stress, and whether perceptions of the national economic situation and of the risk of getting infected modified this association. METHODS: One thousand seven hundred fifty nine participants from a nation-wide population-based eCohort in Switzerland were followed between November 2020 and September 2021. Financial resources and employment status were assessed twice (Nov2020-Mar2021, May-Jul 2021). Mental health was assessed after the second measurement of financial resources and employment status, using the Depression, Anxiety and Stress Scale (DASS-21). We modelled DASS-21 scores with linear regression, adjusting for demographics, health status, social relationships and changes in workload, and tested interactions with subjective risk perceptions. RESULTS: We observed scores above thresholds for normal levels for 16% (95%CI = 15-18) of participants for depression, 8% (95%CI = 7-10) for anxiety, and 10% (95%CI = 9-12) for stress. Compared to continuously comfortable or sufficient financial resources, continuously precarious or insufficient resources were associated with worse scores for all outcomes. Increased financial resources were associated with higher anxiety. In the working-age group, shifting from full to part-time employment was associated with higher stress and anxiety. Perceiving the Swiss economic situation as worrisome was associated with higher anxiety in participants who lost financial resources or had continuously precarious or insufficient resources. CONCLUSION: This study confirms the association of economic stressors and mental health during the COVID-19 pandemic and highlights the exacerbating role of subjective risk perception on this association

    Linear viscoelasticity - bone volume fraction relationships of bovine trabecular bone

    Get PDF
    Trabecular bone has been previously recognized as time-dependent (viscoelastic) material, but the relationships of its viscoelastic behaviour with bone volume fraction (BV/TV) have not been investigated so far. Therefore, the aim of the present study was to quantify the time-dependent viscoelastic behaviour of trabecular bone and relate it to BV/TV. Uniaxial compressive creep experiments were performed on cylindrical bovine trabecular bone samples ([Formula: see text] ) at loads corresponding to physiological strain level of 2000 [Formula: see text] . We assumed that the bone behaves in a linear viscoelastic manner at this low strain level and the corresponding linear viscoelastic parameters were estimated by fitting a generalized Kelvin–Voigt rheological model to the experimental creep strain response. Strong and significant power law relationships ([Formula: see text] ) were found between time-dependent creep compliance function and BV/TV of the bone. These BV/TV-based material properties can be used in finite element models involving trabecular bone to predict time-dependent response. For users’ convenience, the creep compliance functions were also converted to relaxation functions by using numerical interconversion methods and similar power law relationships were reported between time-dependent relaxation modulus function and BV/TV

    Lateral Orbitofrontal Cortex Involvement in Initial Negative Aesthetic Impression Formation

    Get PDF
    It is well established that aesthetic appreciation is related with activity in several different brain regions. The identification of the neural correlates of beauty or liking ratings has been the focus of most prior studies. Not much attention has been directed towards the fact that humans are surrounded by objects that lead them to experience aesthetic indifference or leave them with a negative aesthetic impression. Here we explore the neural substrate of such experiences. Given the neuroimaging techniques that have been used, little is known about the temporal features of such brain activity. By means of magnetoencephalography we registered the moment at which brain activity differed while participants viewed images they considered to be beautiful or not. Results show that the first differential activity appears between 300 and 400 ms after stimulus onset. During this period activity in right lateral orbitofrontal cortex (lOFC) was greater while participants rated visual stimuli as not beautiful than when they rated them as beautiful. We argue that this activity is associated with an initial negative aesthetic impression formation, driven by the relative hedonic value of stimuli regarded as not beautiful. Additionally, our results contribute to the understanding of the nature of the functional roles of the lOFC

    Optics and Quantum Electronics

    Get PDF
    Contains table of contents for Section 2 and reports on eighteen research projects.National Science Foundation (Grant EET 87-00474)Joint Services Electronics Program (Contract DAAL03-86-K-0002)Joint Services Electronics Program (Contract DAALO3-89-C-0001)Charles Stark Draper Laboratory (Grant DL-H-285408)Charles Stark Draper Laboratory (Grant DL-H-2854018)National Science Foundation (Grant EET 87-03404)National Science Foundation (Grant ECS 84-06290)U.S. Air Force - Office of Scientific Research (Contract F49620-88-C-0089)AT&T Bell FoundationNational Science Foundation (Grant ECS 85-52701)National Institutes of Health (Grant 5-RO1-GM35459)Massachusetts General Hospital (Office of Naval Research Contract N00014-86-K-0117)Lawrence Livermore National Laboratory (Subcontract B048704

    Recruitment of lateral rostral prefrontal cortex in spontaneous and task-related thoughts

    Get PDF
    Behavioural and neuroimaging studies suggest that spontaneous and task-related thought processes share common cognitive mechanisms and neural bases. Lateral rostral prefrontal cortex (RPFC) is a brain region that has been implicated both in spontaneous thought and in high-level cognitive control processes, such as goal/subgoal integration and the manipulation of self-generated thoughts. We therefore propose that the recruitment of lateral RPFC may follow a U-shaped function of cognitive demand: relatively high in low-demand situations conducive to the emergence of spontaneous thought, and in high-demand situations depending on processes supported by this brain region. We used functional magnetic resonance imaging to investigate brain activity while healthy participants performed two tasks, each with three levels of cognitive demands, in a block design. The frequency of task-unrelated thoughts, measured by questionnaire, was highest in the low cognitive demand condition. Low and high cognitive demand conditions were each compared to the intermediate level. Lateral RPFC and superior parietal cortex were recruited in both comparisons, with additional activations specific to each contrast. These results suggest that RPFC is involved both when (a) task demands are low, and the mind wanders, and (b) the task requires goal/subgoal integration and manipulation of self-generated thoughts

    Non-invasive prediction of the mouse tibia mechanical properties from microCT images: comparison between different finite element models

    Get PDF
    New treatments for bone diseases require testing in animal models before clinical translation, and the mouse tibia is among the most common models. In vivo micro-Computed Tomography (microCT)-based micro-Finite Element (microFE) models can be used for predicting the bone strength non-invasively, after proper validation against experimental data. Different modelling techniques can be used to estimate the bone properties, and the accuracy associated with each is unclear. The aim of this study was to evaluate the ability of different microCT-based microFE models to predict the mechanical properties of the mouse tibia under compressive load. Twenty tibiae were microCT scanned at 10.4 µm voxel size and subsequently compressed at 0.03 mm/s until failure. Stiffness and failure load were measured from the load–displacement curves. Different microFE models were generated from each microCT image, with hexahedral or tetrahedral mesh, and homogeneous or heterogeneous material properties. Prediction accuracy was comparable among models. The best correlations between experimental and predicted mechanical properties, as well as lower errors, were obtained for hexahedral models with homogeneous material properties. Experimental stiffness and predicted stiffness were reasonably well correlated (R2 = 0.53–0.65, average error of 13–17%). A lower correlation was found for failure load (R2 = 0.21–0.48, average error of 9–15%). Experimental and predicted mechanical properties normalized by the total bone mass were strongly correlated (R2 = 0.75–0.80 for stiffness, R2 = 0.55–0.81 for failure load). In conclusion, hexahedral models with homogeneous material properties based on in vivo microCT images were shown to best predict the mechanical properties of the mouse tibia

    Protein disorder-order interplay to guide the growth of hierarchical mineralized structures

    Get PDF
    A major goal in materials science is to develop bioinspired functional materials based on the precise control of molecular building blocks across length scales. Here we report a protein-mediated mineralization process that takes advantage of disorder–order interplay using elastin-like recombinamers to program organic–inorganic interactions into hierarchically ordered mineralized structures. The materials comprise elongated apatite nanocrystals that are aligned and organized into microscopic prisms, which grow together into spherulite-like structures hundreds of micrometers in diameter that come together to fill macroscopic areas. The structures can be grown over large uneven surfaces and native tissues as acid-resistant membranes or coatings with tuneable hierarchy, stiffness, and hardness. Our study represents a potential strategy for complex materials design that may open opportunities for hard tissue repair and provide insights into the role of molecular disorder in human physiology and pathology
    corecore