16 research outputs found

    Promotor and 5'splice site interactions in retroviruses and retroviral vectors

    Get PDF
    [no abstract

    Avoiding cytotoxicity of transposases by dose-controlled mRNA delivery

    Get PDF
    The Sleeping Beauty (SB) transposase and its newly developed hyperactive variant, SB100X, are of increasing interest for genome modification in experimental models and gene therapy. The potential cytotoxicity of transposases requires careful assessment, considering that residual integration events of transposase expression vectors delivered by physicochemical transfection or episomal retroviral vectors may lead to permanent transposase expression and resulting uncontrollable transposition. Comparing retrovirus-based approaches for delivery of mRNA, episomal DNA or integrating DNA, we found that conventional SB transposase, SB100X and a newly developed codon-optimized SB100Xo may trigger premitotic arrest and apoptosis. Cell stress induced by continued SB overexpression was self-limiting due to the induction of cell death, which occurred even in the absence of a co-transfected transposable element. The cytotoxic effects of SB transposase were strictly dose dependent and heralded by induction of p53 and c-Jun. Inactivating mutations in SB’s catalytic domain could not abrogate cytotoxicity, suggesting a mechanism independent of DNA cleavage activity. An improved approach of retrovirus particle-mediated mRNA transfer allowed transient and dose-controlled expression of SB100X, supported efficient transposition and prevented cytotoxicity. Transposase-mediated gene transfer can thus be tuned to maintain high efficiency in the absence of overt cell damage

    Limited complementarity between U1 snRNA and a retroviral 5′ splice site permits its attenuation via RNA secondary structure

    Get PDF
    Multiple types of regulation are used by cells and viruses to control alternative splicing. In murine leukemia virus, accessibility of the 5′ splice site (ss) is regulated by an upstream region, which can fold into a complex RNA stem–loop structure. The underlying sequence of the structure itself is negligible, since most of it could be functionally replaced by a simple heterologous RNA stem–loop preserving the wild-type splicing pattern. Increasing the RNA duplex formation between U1 snRNA and the 5′ss by a compensatory mutation in position +6 led to enhanced splicing. Interestingly, this mutation affects splicing only in the context of the secondary structure, arguing for a dynamic interplay between structure and primary 5′ss sequence. The reduced 5′ss accessibility could also be counteracted by recruiting a splicing enhancer domain via a modified MS2 phage coat protein to a single binding site at the tip of the simple RNA stem–loop. The mechanism of 5′ss attenuation was revealed using hyperstable U1 snRNA mutants, showing that restricted U1 snRNP access is the cause of retroviral alternative splicing

    New Way of Regulating Alternative Splicing in Retroviruses: the Promoter Makes a Difference

    No full text
    Alternative splicing has been recognized as a major mechanism for creating proteomic diversity from a limited number of genes. However, not all determinants regulating this process have been characterized. Using subviral human immunodeficiency virus (HIV) env constructs we observed an enhanced splicing of the RNA when expression was under control of the cytomegalovirus (CMV) promoter instead of the HIV long terminal repeat (LTR). We extended these observations to LTR- or CMV-driven murine leukemia proviruses, suggesting that retroviral LTRs are adapted to inefficient alternative splicing at most sites in order to maintain balanced gene expression

    Protein transduction from retroviral Gag precursors

    No full text
    Retroviral particles assemble a few thousand units of the Gag polyproteins. Proteolytic cleavage mediated by the retroviral protease forms the bioactive retroviral protein subunits before cell entry. We hypothesized that this process could be exploited for targeted, transient, and dose-controlled transduction of nonretroviral proteins into cultured cells. We demonstrate that gammaretroviral particles tolerate the incorporation of foreign protein at several positions of their Gag or Gag-Pol precursors. Receptor-mediated and thus potentially cell-specific uptake of engineered particles occurred within minutes after cell contact. Dose and kinetics of nonretroviral protein delivery were dependent upon the location within the polyprotein precursor. Proteins containing nuclear localization signals were incorporated into retroviral particles, and the proteins of interest were released from the precursor by the retroviral protease, recognizing engineered target sites. In contrast to integration-defective lentiviral vectors, protein transduction by retroviral polyprotein precursors was completely transient, as protein transducing retrovirus-like particles could be produced that did not transduce genes into target cells. Alternatively, bifunctional protein-delivering particle preparations were generated that maintained their ability to serve as vectors for retroviral transgenes. We show the potential of this approach for targeted genome engineering of induced pluripotent stem cells by delivering the site-specific DNA recombinase, Flp. Protein transduction of Flp after proteolytic release from the matrix position of Gag allowed excision of a lentivirally transduced cassette that concomitantly expresses the canonical reprogramming transcription factors (Oct4, Klf4, Sox2, c-Myc) and a fluorescent marker gene, thus generating induced pluripotent stem cells that are free of lentivirally transduced reprogramming genes

    Development of Novel Efficient SIN Vectors with Improved Safety Features for Wiskott–Aldrich Syndrome Stem Cell Based Gene Therapy

    Get PDF
    Gene therapy is a promising therapeutic approach to treat primary immunodeficiencies. Indeed, the clinical trial for the Wiskott–Aldrich Syndrome (WAS) that is currently ongoing at the Hannover Medical School (Germany) has recently reported the correction of all affected cell lineages of the hematopoietic system in the first treated patients. However, an extensive study of the clonal inventory of those patients reveals that LMO2, CCND2 and MDS1/EVI1 were preferentially prevalent. Moreover, a first leukemia case was observed in this study, thus reinforcing the need of developing safer vectors for gene transfer into HSC in general. Here we present a novel self-inactivating (SIN) vector for the gene therapy of WAS that combines improved safety features. We used the elongation factor 1 alpha (EFS) promoter, which has been extensively evaluated in terms of safety profile, to drive a codon-optimized human WASP cDNA. To test vector performance in a more clinically relevant setting, we transduced murine HSPC as well as human CD34+ cells and also analyzed vector efficacy in their differentiated myeloid progeny. Our results show that our novel vector generates comparable WAS protein levels and is as effective as the clinically used LTR-driven vector. Therefore, the described SIN vectors appear to be good candidates for potential use in a safer new gene therapy protocol for WAS, with decreased risk of insertional mutagenesis.Fil: Avedillo Diez, Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina. Hannover Medical School; AlemaniaFil: Zychlinski, Daniela. Hannover Medical School; AlemaniaFil: Coci, Emanuele G.. Hannover Medical School; AlemaniaFil: Galla, Melanie. Hannover Medical School; AlemaniaFil: Modlich, Ute. Hannover Medical School; AlemaniaFil: Dewey, Ricardo. Hannover Medical School; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Schwarzer, Adrian. Hannover Medical School; AlemaniaFil: Maetzig, Tobias. Hannover Medical School; AlemaniaFil: Mpofu, Nonsikelelo. Hannover Medical School; AlemaniaFil: Jaeckel, Elmar. Hannover Medical School; AlemaniaFil: Boztug, Kaan. Hannover Medical School; AlemaniaFil: Baum, Christopher. Hannover Medical School; AlemaniaFil: Klein, Christoph. Hannover Medical School; AlemaniaFil: Schambach, Axel. Hannover Medical School; Alemani

    A linear height-resolving windfield model for tropical cyclone boundary layer

    Get PDF
    The wind field model is one of the most important components for the tropical cyclone hazard assessment, thus the appropriate design of this element is extremely important. While solving the fully non-linear governing equations of the wind field was demonstrated to be quite challenging, the linear models showed great promise delivering a simple solution with good approximation to the wind field, and can be readily adopted for engineering applications. For instance it can be implemented in the Monte Carlo technique for rapid tropical-cyclone risk assessment. This study aims to develop a height-resolving, linear analytical model of the boundary layer winds in a moving tropical cyclone. The wind velocity is expressed as the summation of two components, namely gradient wind in the free atmosphere and frictional component near the ground surface. The gradient wind was derived straightforwardly, while the frictional component was obtained based on the scale analysis of the fully non-linear Navier-Stokes equations. The variation of wind field with respect to the angular coordinate was highlighted since its contribution to the surface wind speed and associated spatial distribution cannot be ignored in the first-order approximation. The results generated by the present model are consistent with tropical cyclone observations
    corecore