472 research outputs found

    Quantum test of the equivalence principle for atoms in superpositions of internal energy eigenstates

    Full text link
    The Einstein Equivalence Principle (EEP) has a central role in the understanding of gravity and space-time. In its weak form, or Weak Equivalence Principle (WEP), it directly implies equivalence between inertial and gravitational mass. Verifying this principle in a regime where the relevant properties of the test body must be described by quantum theory has profound implications. Here we report on a novel WEP test for atoms. A Bragg atom interferometer in a gravity gradiometer configuration compares the free fall of rubidium atoms prepared in two hyperfine states and in their coherent superposition. The use of the superposition state allows testing genuine quantum aspects of EEP with no classical analogue, which have remained completely unexplored so far. In addition, we measure the Eotvos ratio of atoms in two hyperfine levels with relative uncertainty in the low 10910^{-9}, improving previous results by almost two orders of magnitude.Comment: Accepted for publication in Nature Communicatio

    Relativistic Unruh-DeWitt detectors with quantized center of mass

    Full text link
    In this paper, we extend the Unruh-DeWitt (UDW) model to include a relativistic quantized center of mass (COM) for the detector, which traditionally has a classical COM and follows a classical trajectory. We develop a relativistic model of the detector following two different approaches, starting from either a first- or second-quantized treatment, which enables us to compare the fundamental differences between the two schemes. In particular, we find that the notion of localization is different between the two models, and leads to distinct predictions which we study by comparing the spontaneous emission rates for the UDW detector interacting with a massless scalar field. Furthermore, we consider the UDW system in both a vacuum and medium, and compare our results to existing models describing a classical or quantized COM at low energies. We find that the predictions of each model, including the two relativistic cases, can in principle be empirically distinguished, and our results can be further extended to find optimal detector states and processes to perform such experiments. This would clarify both the role of a quantized COM for interactions with an external field, and the differing localizations between the first- and second-quantized treatments.Comment: 17 pages, 5 figure

    Entanglement between smeared field operators in the Klein-Gordon vacuum

    Full text link
    Quantum field theory is the application of quantum physics to fields. It provides a theoretical framework widely used in particle physics and condensed matter physics. One of the most distinct features of quantum physics with respect to classical physics is entanglement or the existence of strong correlations between subsystems that can even be spacelike separated. In quantum fields, observables restricted to a region of space define a subsystem. While there are proofs on the existence of local observables that would allow a violation of Bell's inequalities in the vacuum states of quantum fields as well as some explicit but technically demanding schemes requiring an extreme fine-tuning of the interaction between the fields and detectors, an experimentally accessible entanglement witness for quantum fields is still missing. Here we introduce smeared field operators which allow reducing the vacuum to a system of two effective bosonic modes. The introduction of such collective observables is motivated by the fact that no physical probe has access to fields in single spatial (mathematical) points but rather smeared over finite volumes. We first give explicit collective observables whose correlations reveal vacuum entanglement in the Klein-Gordon field. We then show that the critical distance between the two regions of space above which two effective bosonic modes become separable is of the order of the Compton wavelength of the particle corresponding to the massive Klein-Gordon field.Comment: 21 pages, 11 figure

    Minute-of-Arc Resolution Gamma ray Imaging Experiment—MARGIE

    Get PDF
    MARGIE (Minute-of-Arc Resolution Gamma-ray Imaging Experiment) is a large area(∼104 cm2), wide field-of-view (∼1 sr), hard X-ray/gamma-ray (∼20–600 keV) coded-mask imaging telescope capable of performing a sensitive survey of both steady and transient cosmic sources. MARGIE has been selected for a NASA mission-concept study for an Ultra Long Duration (100 day) Balloon flight. We describe our program to develop the instrument based on new detector technology of either cadmium zinc telluride (CZT) semiconductors or pixellated cesium iodide (CsI) scintillators viewed by fast-timing bi-directional charge-coupled devices (CCDs). The primary scientific objectives are to image faint Gamma-Ray Bursts (GRBs) in near-real-time at the low intensity (high-redshift) end of the logN-logS distribution, thereby extending the sensitivity of present observations, and to perform a wide field survey of the Galactic plane

    MARGIE: A gamma-ray burst ultra-long duration balloon mission

    Get PDF
    We are designing MARGIE as a 100 day ULDB mission to: a) detect and localize gamma-ray bursts; and b) survey the hard X-ray sky. MARGIE will consist of one small field-of-view (FOV) and four large FOV coded mask modules mounted on a balloon gondola. The burst position will be calculated onboard and disseminated in near-real time, while information about every count will be telemetered to the ground for further analysis. In a 100-day mission we will localize ∼40 bursts with peak photon fluxes from 0.14 to ∼5 ph cm−2 s−1 using 1 s integrations; the typical localization resolution will be better than ∼2 arcminutes

    Witnessing causal nonseparability

    Full text link
    Our common understanding of the physical world deeply relies on the notion that events are ordered with respect to some time parameter, with past events serving as causes for future ones. Nonetheless, it was recently found that it is possible to formulate quantum mechanics without any reference to a global time or causal structure. The resulting framework includes new kinds of quantum resources that allow performing tasks - in particular, the violation of causal inequalities - which are impossible for events ordered according to a global causal order. However, no physical implementation of such resources is known. Here we show that a recently demonstrated resource for quantum computation - the quantum switch - is a genuine example of "indefinite causal order". We do this by introducing a new tool - the causal witness - which can detect the causal nonseparability of any quantum resource that is incompatible with a definite causal order. We show however that the quantum switch does not violate any causal nequality.Comment: 15 + 12 pages, 5 figures. Published versio

    HST morphologies of local Lyman break galaxy analogs I: Evidence for starbursts triggered by merging

    Get PDF
    Heckman et al. (2005) used the Galaxy Evolution Explorer (GALEX) UV imaging survey to show that there exists a rare population of nearby compact UV-luminous galaxies (UVLGs) that closely resembles high redshift Lyman break galaxies (LBGs). We present HST images in the UV, optical, and Ha, and resimulate them at the depth and resolution of the GOODS/UDF fields to show that the morphologies of UVLGs are also similar to those of LBGs. Our sample of 8 LBG analogs thus provides detailed insight into the connection between star formation and LBG morphology. Faint tidal features or companions can be seen in all of the rest-frame optical images, suggesting that the starbursts are the result of a merger or interaction. The UV/optical light is dominated by unresolved (~100-300 pc) super starburst regions (SSBs). A detailed comparison with the galaxies Haro 11 and VV 114 at z=0.02 indicates that the SSBs themselves consist of diffuse stars and (super) star clusters. The structural features revealed by the new HST images occur on very small physical scales and are thus not detectable in images of high redshift LBGs, except in a few cases where they are magnified by gravitational lensing. We propose, therefore, that LBGs are mergers of gas-rich, relatively low-mass (~10^10 Msun) systems, and that the mergers trigger the formation of SSBs. If galaxies at high redshifts are dominated by SSBs, then the faint end slope of the luminosity function is predicted to have slope alpha~2. Our results are the most direct confirmation to date of models that predict that the main mode of star formation in the early universe was highly collisional.Comment: 32 pages, 15 figures. ApJ In pres

    GMRT mini-survey to search for 21-cm absorption in Quasar-Galaxy Pairs at z~0.1

    Get PDF
    We present the results from our 21-cm absorption survey of a sample of 5 quasar-galaxy pairs (QGPs), with the redshift of the galaxies in the range 0.03<zg<0.18, selected from the SDSS. The HI 21-cm absorption was searched towards the 9 sight lines with impact parameters ranging from 10 to 55 kpc using GMRT. 21-cm absorption was detected only in one case i.e. towards the Quasar (zq=2.625 SDSS J124157.54+633241.6)-galaxy (zg=0.143 SDSS J124157.26+633237.6) pair with the impact parameter 11 kpc. The quasar sight line in this case pierces through the stellar disk of a galaxy having near solar metallicity (i.e (O/H)+12=8.7) and star formation rate uncorrected for dust attenuation of 0.1 M_odot/yr. The quasar spectrum reddened by the foreground galaxy is well fitted with the Milky Way extinction curve (with an Av of 0.44) and the estimated HI column density is similar to the value obtained from 21-cm absorption assuming spin temperature of 100K. Combining our sample with the z<0.1 data available in the literature, we find the detectability of 21-cm absorption with integrated optical depth greater than 0.1 km\s to be 50% for the impact parameter less than 20 kpc. Using the surface brightness profiles and relationship between the optical size and extent of the HI disk known for nearby galaxies, we conclude that in most of the cases of 21-cm absorption non-detection, the sight lines may not be passing through the HI gas. We also find that in comparison to the absorption systems associated with these QGPs, z<1 DLAs with 21-cm absorption detections have lower CaII equivalent widths despite having higher 21-cm optical depths and smaller impact parameters. This suggests that the current sample of DLAs may be a biased population that avoids sight lines through dusty star-forming galaxies. A systematic survey of QGPs is needed to confirm these findings and understand the nature of 21-cm absorbers.Comment: 17 pages, 5 tables, 19 figures, accepted for publication in MNRAS (abstract abridged
    corecore