702 research outputs found

    IgG4- related disease: an orphan disease with many faces

    Get PDF
    Immunoglobulin G4- related disease (IgG4-RD) is a rare systemic fibro-inflammatory disorder (ORPHA284264). Although patients have been described more than 100 years ago, the systemic nature of this disease has been recognized in the 21(st) century only. Type 1 autoimmune pancreatitis is the most frequent manifestation of IgG4-RD. However, IgG4-RD can affect any organ such as salivary glands, orbits, retroperitoneum and many others. Recent research enabled a clear clinical and histopathological description of IgG4-RD. Typically, lymphoplasmacellular inflammation, storiform fibrosis and obliterative phlebitis are found in IgG4-RD biopsies and the tissue invading plasma cells largely produce IgG4. Elevated serum IgG4 levels are found in many but not all patients. Consequently, diagnostic criteria for IgG4-RD have been proposed recently. Treatment is largely based on clinical experience and retrospective case series. Glucocorticoids are the mainstay of therapy, although adjunctive immunosuppressive agents are used in relapsing patients. This review summarizes current knowledge on clinical manifestations, pathophysiology and treatment of IgG4-RD

    Design of the Tocilizumab in Giant Cell Arteritis Trial

    Get PDF
    Overview. The GiACTA trial is a multicenter, randomized, double-blind, and placebo-controlled study designed to test the ability of tocilizumab (TCZ), an interleukin (IL)-6 receptor antagonist, to maintain disease remission in patients with giant cell arteritis (GCA). Design:. Approximately 100 centers will enroll 250 patients with active disease. The trial consists of a 52-week blinded treatment phase followed by 104 weeks of open-label extension. Patients will be randomized into one of four groups. Group A (TCZ 162 mg weekly plus a 6-month prednisone-taper); group B (TCZ 162 mg every other week plus a 6-month prednisone-taper); group C (placebo plus a 6-month prednisone-taper); and group D (placebo plus a 12-month prednisone taper). We hypothesize that patients assigned to TCZ in addition to a 6-month prednisone course are more likely to achieve the primary efficacy endpoint of sustained remission (SR) at 52 weeks compared with those assigned to a 6-month prednisone course alone, thus potentially minimizing the long-term adverse effects of corticosteroids. Conclusion:. GiACTA will test the hypothesis that interference with IL-6 signaling exerts a beneficial effect on patients with GCA. The objective of this paper is to describe the design of the trial and address major issues related to its development

    Positive regulators of osteoclastogenesis and bone resorption in rheumatoid arthritis

    Get PDF
    Bone destruction is a frequent and clinically serious event in patients with rheumatoid arthritis (RA). Local joint destruction can cause joint instability and often necessitates reconstructive or replacement surgery. Moreover, inflammation-induced systemic bone loss is associated with an increased fracture risk. Bone resorption is a well-controlled process that is dependent on the differentiation of monocytes to bone-resorbing osteoclasts. Infiltrating as well as resident synovial cells, such as T cells, monocytes and synovial fibroblasts, have been identified as sources of osteoclast differentiation signals in RA patients. Pro-inflammatory cytokines are amongst the most important mechanisms driving this process. In particular, macrophage colony-stimulating factor, RANKL, TNF, IL-1 and IL-17 may play dominant roles in the pathogenesis of arthritis-associated bone loss. These cytokines activate different intracellular pathways to initiate osteoclast differentiation. Thus, over the past years several promising targets for the treatment of arthritic bone destruction have been defined

    IgG4-related disease: current challenges and future prospects

    Get PDF

    Imbalance of local bone metabolism in inflammatory arthritis and its reversal upon tumor necrosis factor blockade: direct analysis of bone turnover in murine arthritis

    Get PDF
    Chronic arthritis typically leads to loss of periarticular bone, which results from an imbalance between bone formation and bone resorption. Recent research has focused on the role of osteoclastogenesis and bone resorption in arthritis. Bone resorption cannot be observed isolated, however, since it is closely linked to bone formation and altered bone formation may also affect inflammatory bone loss. To simultaneously assess bone resorption and bone formation in inflammatory arthritis, we developed a histological technique that allows visualization of osteoblast function by in-situ hybridization for osteocalcin and osteoclast function by histochemistry for tartrate-resistant acid phosphatase. Paw sections from human tumor necrosis factor transgenic mice, which develop an erosive arthritis, were analyzed at three different skeletal sites: subchondral bone erosions, adjacent cortical bone channels, and endosteal regions distant from bone erosions. In subchondral bone erosions, osteoclasts were far more common than osteoblasts. In contrast, cortical bone channels underneath subchondral bone erosions showed an accumulation of osteoclasts but also of functional osteoblasts resembling a status of high bone turnover. In contrast, more distant skeletal sites showed only very low bone turnover with few scattered osteoclasts and osteoblasts. Within subchondral bone erosions, osteoclasts populated the subchondral as well as the inner wall, whereas osteoblasts were almost exclusively found along the cortical surface. Blockade of tumor necrosis factor reversed the negative balance of bone turnover, leading to a reduction of osteoclast numbers and enhanced osteoblast numbers, whereas the blockade of osteoclastogenesis by osteoprotegerin also abrogated the osteoblastic response. These data indicate that bone resorption dominates at skeletal sites close to synovial inflammatory tissue, whereas bone formation is induced at more distant sites attempting to counter-regulate bone resorption

    Tumour necrosis factor activates the mitogen-activated protein kinases p38α and ERK in the synovial membrane in vivo

    Get PDF
    Tumour necrosis factor (TNF) is considered to be a major factor in chronic synovial inflammation and is an inducer of mitogen-activated protein kinase (MAPK) signalling. In the present study we investigated the ability of TNF to activate MAPKs in the synovial membrane in vivo. We studied human TNF transgenic mice – an in vivo model of TNF-induced arthritis – to examine phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun amino terminal kinase (JNK) and p38MAPKα in the inflamed joints by means of immunoblot and immunohistochemistry. In addition, the effects of systemic blockade of TNF, IL-1 and receptor activator of nuclear factor-κB (RANK) ligand on the activation of MAPKs were assessed. In vivo, overexpression of TNF induced activation of p38MAPKα and ERK in the synovial membrane, whereas activation of JNK was less pronounced and rarely observed on immunohistochemical analysis. Activated p38MAPKα was predominantly found in synovial macrophages, whereas ERK activation was present in both synovial macrophages and fibroblasts. T and B lymphocytes did not exhibit major activation of any of the three MAPKs. Systemic blockade of TNF reduced activation of p38MAPKα and ERK, whereas inhibition of IL-1 only affected p38MAPKα and blockade of RANK ligand did not result in any decrease in MAPK activation in the synovial membrane. These data indicate that TNF preferentially activates p38MAPKα and ERK in synovial membrane exposed to TNF. This not only suggests that targeted inhibition of p38MAPKα and ERK is a feasible strategy for blocking TNF-mediated effects on joints, but it also shows that even currently available methods to block TNF effectively reduce activation of these two MAPKs

    Evaluation of genome-wide loci of iron metabolism in hereditary hemochromatosis identifies PCSK7 as a host risk factor of liver cirrhosis

    Get PDF
    Genome-wide association studies (GWAS) have revealed genetic determinants of iron metabolism, but correlation of these with clinical phenotypes is pending. Homozygosity for HFE C282Y is the predominant genetic risk factor for hereditary hemochromatosis (HH) and may cause liver cirrhosis. However, this genotype has a low penetrance. Thus, detection of yet unknown genetic markers that identify patients at risk of developing severe liver disease is necessary for better prevention. Genetic loci associated with iron metabolism (TF, TMPRSS6, PCSK7, TFR2 and Chr2p14) in recent GWAS and liver fibrosis (PNPLA3) in recent meta-analysis were analyzed for association with either liver cirrhosis or advanced fibrosis in 148 German HFE C282Y homozygotes. Replication of associations was sought in additional 499 Austrian/Swiss and 112 HFE C282Y homozygotes from Sweden. Only variant rs236918 in the PCSK7 gene (proprotein convertase subtilisin/kexin type 7) was associated with cirrhosis or advanced fibrosis (P = 1.02 × 10−5) in the German cohort with genotypic odds ratios of 3.56 (95% CI 1.29-9.77) for CG heterozygotes and 5.38 (95% CI 2.39-12.10) for C allele carriers. Association between rs236918 and cirrhosis was confirmed in Austrian/Swiss HFE C282Y homozygotes (P = 0.014; ORallelic = 1.82 (95% CI 1.12-2.95) but not in Swedish patients. Post hoc combined analyses of German/Swiss/Austrian patients with available liver histology (N = 244, P = 0.00014, ORallelic = 2.84) and of males only (N = 431, P = 2.17 × 10−5, ORallelic = 2.54) were consistent with the premier finding. Association between rs236918 and cirrhosis was not confirmed in alcoholic cirrhotics, suggesting specificity of this genetic risk factor for HH. PCSK7 variant rs236918 is a risk factor for cirrhosis in HH patients homozygous for the HFE C282Y mutatio

    Vitamin D in autoimmunity: Molecular mechanisms and therapeutic potential

    Get PDF
    Over the last three decades, it has become clear that the role of vitamin D goes beyond the regulation of calcium homeostasis and bone health. An important extraskeletal effect of vitamin D is the modulation of the immune system. In the context of autoimmune diseases, this is illustrated by correlations of vitamin D status and genetic polymorphisms in the vitamin D receptor with the incidence and severity of the disease. These correlations warrant investigation into the potential use of vitamin D in the treatment of patients with autoimmune diseases. In recent years, several clinical trials have been performed to investigate the therapeutic value of vitamin D in multiple sclerosis, rheumatoid arthritis, Crohn's disease, type I diabetes, and systemic lupus erythematosus. Additionally, a second angle of investigation has focused on unraveling the molecular pathways used by vitamin D in order to find new potential therapeutic targets. This review will not only provide an overview of the clinical trials that have been performed but also discuss the current knowledge about the molecular mechanisms underlying the immunomodulatory effects of vitamin D and how these advances can be used in the treatment of autoimmune diseases
    corecore