63 research outputs found
Channel Fragmentation in Dynamic Spectrum Access Systems - a Theoretical Study
Dynamic Spectrum Access systems exploit temporarily available spectrum
(`white spaces') and can spread transmissions over a number of non-contiguous
sub-channels. Such methods are highly beneficial in terms of spectrum
utilization. However, excessive fragmentation degrades performance and hence
off-sets the benefits. Thus, there is a need to study these processes so as to
determine how to ensure acceptable levels of fragmentation. Hence, we present
experimental and analytical results derived from a mathematical model. We model
a system operating at capacity serving requests for bandwidth by assigning a
collection of gaps (sub-channels) with no limitations on the fragment size. Our
main theoretical result shows that even if fragments can be arbitrarily small,
the system does not degrade with time. Namely, the average total number of
fragments remains bounded. Within the very difficult class of dynamic
fragmentation models (including models of storage fragmentation), this result
appears to be the first of its kind. Extensive experimental results describe
behavior, at times unexpected, of fragmentation under different algorithms. Our
model also applies to dynamic linked-list storage allocation, and provides a
novel analysis in that domain. We prove that, interestingly, the 50% rule of
the classical (non-fragmented) allocation model carries over to our model.
Overall, the paper provides insights into the potential behavior of practical
fragmentation algorithms
Panda: Neighbor Discovery on a Power Harvesting Budget
Object tracking applications are gaining popularity and will soon utilize
Energy Harvesting (EH) low-power nodes that will consume power mostly for
Neighbor Discovery (ND) (i.e., identifying nodes within communication range).
Although ND protocols were developed for sensor networks, the challenges posed
by emerging EH low-power transceivers were not addressed. Therefore, we design
an ND protocol tailored for the characteristics of a representative EH
prototype: the TI eZ430-RF2500-SEH. We present a generalized model of ND
accounting for unique prototype characteristics (i.e., energy costs for
transmission/reception, and transceiver state switching times/costs). Then, we
present the Power Aware Neighbor Discovery Asynchronously (Panda) protocol in
which nodes transition between the sleep, receive, and transmit states. We
analyze \name and select its parameters to maximize the ND rate subject to a
homogeneous power budget. We also present Panda-D, designed for non-homogeneous
EH nodes. We perform extensive testbed evaluations using the prototypes and
study various design tradeoffs. We demonstrate a small difference (less then
2%) between experimental and analytical results, thereby confirming the
modeling assumptions. Moreover, we show that Panda improves the ND rate by up
to 3x compared to related protocols. Finally, we show that Panda-D operates
well under non-homogeneous power harvesting
Behind the Technology: CT Perfusion in the Setting of Acute Stroke Management
Computed Tomography Perfusion (CTP) is an imaging modality that generates parametric maps of cerebral hemodynamics which are useful in the assessment of suspected acute ischemic stoke. However, the technology underlying CTP is complex and serious controversy surrounds the safety of CTP tests and the reproducibility and validity of CTP results. This report briefly outlines the history of CTP, its current clinical applications for stroke management, the main controversies surrounding CTP, and future directions for this technology
Project-based Learning within a Large-Scale Interdisciplinary Research Effort
The modern engineering landscape increasingly requires a range of skills to
successfully integrate complex systems. Project-based learning is used to help
students build professional skills. However, it is typically applied to small
teams and small efforts. This paper describes an experience in engaging a large
number of students in research projects within a multi-year interdisciplinary
research effort. The projects expose the students to various disciplines in
Computer Science (embedded systems, algorithm design, networking), Electrical
Engineering (circuit design, wireless communications, hardware prototyping),
and Applied Physics (thin-film battery design, solar cell fabrication). While a
student project is usually focused on one discipline area, it requires
interaction with at least two other areas. Over 5 years, 180 semester-long
projects have been completed. The students were a diverse group of high school,
undergraduate, and M.S. Computer Science, Computer Engineering, and Electrical
Engineering students. Some of the approaches that were taken to facilitate
student learning are real-world system development constraints, regular
cross-group meetings, and extensive involvement of Ph.D. students in student
mentorship and knowledge transfer. To assess the approaches, a survey was
conducted among the participating students. The results demonstrate the
effectiveness of the approaches. For example, 70% of the students surveyed
indicated that working on their research project improved their ability to
function on multidisciplinary teams more than coursework, internships, or any
other activity
Noninvasive In Vivo Imaging to Evaluate Immune Responses and Antimicrobial Therapy against Staphylococcus aureus and USA300 MRSA Skin Infections
Staphylococcus aureus skin infections represent a significant public health threat because of the emergence of antibiotic-resistant strains such as methicillin-resistant S. aureus (MRSA). As greater understanding of protective immune responses and more effective antimicrobial therapies are needed, a S. aureus skin wound infection model was developed in which full-thickness scalpel cuts on the backs of mice were infected with a bioluminescent S. aureus (methicillin sensitive) or USA300 community-acquired MRSA strain and in vivo imaging was used to noninvasively monitor the bacterial burden. In addition, the infection-induced inflammatory response was quantified using in vivo fluorescence imaging of LysEGFP mice. Using this model, we found that both IL-1α and IL-1β contributed to host defense during a wound infection, whereas IL-1β was more critical during an intradermal S. aureus infection. Furthermore, treatment of a USA300 MRSA skin infection with retapamulin ointment resulted in up to 85-fold reduction in bacterial burden and a 53% decrease in infection-induced inflammation. In contrast, mupirocin ointment had minimal clinical activity against this USA300 strain, resulting in only a 2-fold reduction in bacterial burden. Taken together, this S. aureus wound infection model provides a valuable preclinical screening method to investigate cutaneous immune responses and the efficacy of topical antimicrobial therapies
Electrospinning as a route to advanced carbon fibre materials for selected low-temperature electrochemical devices: a review
Electrospinning has been proven as a highly versatile fabrication method for producing nano-structured fibres with controllable morphology, of both the fibres themselves and the void structure of the mats. Additionally, it is possible to use heteroatom doped polymers or to include catalytic precursors in the electrospinning solution to control the surface properties of the fibres. These factors make it an ideal method for the production of electrodes and flow media for a variety of electrochemical devices, enabling reduction in mass transport and activation overpotentials and therefore increasing efficiency. Moreover, the use of biomass as a polymer source has recently gained attention for the ability to embed sustainable principles in the materials of electrochemical devices, complementing their ability to allow an increase in the use of renewable electricity via their application. In this review, the historical and recent developments of electrospun materials for application in redox flow batteries, fuel cells, metal air batteries and supercapacitors are thoroughly reviewed, including an overview of the electrospinning process and a guide to best practice. Finally, we provide an outlook for the emerging use of this process in the field of electrochemical energy devices with the hope that the combination of tailored microstructure, surface functionality and computer modelling will herald a new era of bespoke functional materials that can significantly improve the performance of the devices in which they are used
Long-stay inpatients in short-term emergency units in France. A commentary on Gansel, Danet, and Rauscher
France Emergency Medical Services Bed occupancy USA
- …