3 research outputs found

    Time correlations and 1/f behavior in backscattering radar reflectivity measurements from cirrus cloud ice fluctuations

    Full text link
    The state of the atmosphere is governed by the classical laws of fluid motion and exhibits correlations in various spatial and temporal scales. These correlations are crucial to understand the short and long term trends in climate. Cirrus clouds are important ingredients of the atmospheric boundary layer. To improve future parameterization of cirrus clouds in climate models, it is important to understand the cloud properties and how they change within the cloud. We study correlations in the fluctuations of radar signals obtained at isodepths of winter and fall cirrus clouds. In particular we focus on three quantities: (i) the backscattering cross-section, (ii) the Doppler velocity and (iii) the Doppler spectral width. They correspond to the physical coefficients used in Navier Stokes equations to describe flows, i.e. bulk modulus, viscosity, and thermal conductivity. In all cases we find that power-law time correlations exist with a crossover between regimes at about 3 to 5 min. We also find that different type of correlations, including 1/f behavior, characterize the top and the bottom layers and the bulk of the clouds. The underlying mechanisms for such correlations are suggested to originate in ice nucleation and crystal growth processes.Comment: 33 pages, 9 figures; to appear in the Journal of Geophysical Research - Atmosphere

    Influence of low-cloud radiative effects on tropical circulation and precipitation

    No full text
    International audienceLow-level clouds, which constitute the most prevalent cloud type over tropical oceans, exert a radiative cooling within the planetary boundary layer. By using an atmospheric general circulation model, we investigate the role that this cloud radiative cooling plays in the present-day climate. Low-cloud radiative effects are found to increase the tropics-wide precipitation, to strengthen the winds at the surface of the tropical oceans, and to amplify the atmospheric overturning circulation. An analysis of the water and energy budgets of the atmosphere reveals that most of these effects arises from the strong coupling of cloud-radiative cooling with turbulent fluxes at the ocean surface. The impact of cloud-radiative effects on atmospheric dynamics and precipitation is shown to occur on very short time scales (a few days). Therefore, short-term atmospheric forecasts constitute a valuable framework for evaluating the interactions between cloud processes and atmospheric dynamics, and for assessing their dependence on model physics
    corecore