The state of the atmosphere is governed by the classical laws of fluid motion
and exhibits correlations in various spatial and temporal scales. These
correlations are crucial to understand the short and long term trends in
climate. Cirrus clouds are important ingredients of the atmospheric boundary
layer. To improve future parameterization of cirrus clouds in climate models,
it is important to understand the cloud properties and how they change within
the cloud. We study correlations in the fluctuations of radar signals obtained
at isodepths of winter and fall cirrus clouds. In particular we focus on three
quantities: (i) the backscattering cross-section, (ii) the Doppler velocity and
(iii) the Doppler spectral width. They correspond to the physical coefficients
used in Navier Stokes equations to describe flows, i.e. bulk modulus,
viscosity, and thermal conductivity. In all cases we find that power-law time
correlations exist with a crossover between regimes at about 3 to 5 min. We
also find that different type of correlations, including 1/f behavior,
characterize the top and the bottom layers and the bulk of the clouds. The
underlying mechanisms for such correlations are suggested to originate in ice
nucleation and crystal growth processes.Comment: 33 pages, 9 figures; to appear in the Journal of Geophysical Research
- Atmosphere