224 research outputs found

    The Lick AGN Monitoring Project 2011: Dynamical Modeling of the Broad Line Region in Mrk 50

    Get PDF
    We present dynamical modeling of the broad line region (BLR) in the Seyfert 1 galaxy Mrk 50 using reverberation mapping data taken as part of the Lick AGN Monitoring Project (LAMP) 2011. We model the reverberation mapping data directly, constraining the geometry and kinematics of the BLR, as well as deriving a black hole mass estimate that does not depend on a normalizing factor or virial coefficient. We find that the geometry of the BLR in Mrk 50 is a nearly face-on thick disk, with a mean radius of 9.6(+1.2,-0.9) light days, a width of the BLR of 6.9(+1.2,-1.1) light days, and a disk opening angle of 25\pm10 degrees above the plane. We also constrain the inclination angle to be 9(+7,-5) degrees, close to face-on. Finally, the black hole mass of Mrk 50 is inferred to be log10(M(BH)/Msun) = 7.57(+0.44,-0.27). By comparison to the virial black hole mass estimate from traditional reverberation mapping analysis, we find the normalizing constant (virial coefficient) to be log10(f) = 0.78(+0.44,-0.27), consistent with the commonly adopted mean value of 0.74 based on aligning the M(BH)-{\sigma}* relation for AGN and quiescent galaxies. While our dynamical model includes the possibility of a net inflow or outflow in the BLR, we cannot distinguish between these two scenarios.Comment: Accepted for publication in ApJ. 8 pages, 6 figure

    Pathology of Echinococcosis

    Full text link
    Infection of humans by the larval stage of the tapeworms Echinococcus granulosus sensu lato or Echinococcus multilocularis causes the life-threatening zoonoses cystic echinococcosis (CE) and alveolar echinococcosis (AE). Although cystic liver lesions are a hallmark of both diseases, course, prognosis, and patients' management decisively differ between the two. The wide and overlapping spectrum of morphologies and the limited availability of ancillary tools are challenges for pathologists to reliably diagnose and subtype echinococcosis. Here, we systematically and quantitatively recorded the pathologic spectrum in a clinically and molecularly defined echinococcosis cohort (138 specimens from 112 patients). Immunohistochemistry using a novel monoclonal antibody (mAbEmG3) was implemented, including its combined application with the mAbEm2G11. Six morphologic criteria sufficiently discriminated between CE and AE: size of smallest (CE/AE: >2/≤2 mm) and largest cyst (CE/AE: >25/≤25 mm), thickness of laminated layer (CE/AE: >0.15/≤0.15 mm) and pericystic fibrosis (CE/AE: >0.6/≤0.6 mm), striation of laminated layer (CE/AE: moderate-strong/weak), and number of cysts (CE/AE: ≤9/>9). Combined immunohistochemistry with mAbEm2G11 (E. multilocularis specific) and mAbEmG3 (reactive in AE and CE) was equally specific as and occasionally more sensitive than polymerase chain reaction. On the basis of these findings, we developed a diagnostic algorithm for the differential diagnosis of echinococcosis. In summary, we have not only identified the means to diagnose echinococcosis with greater certainty, but also defined morphologic criteria, which robustly discriminate between CE and AE. We expect our findings to improve echinococcosis diagnostics, especially of challenging cases, beneficially impacting the management of echinococcosis patients

    Pathology of Echinococcosis: A Morphologic and Immunohistochemical Study on 138 Specimens With Focus on the Differential Diagnosis Between Cystic and Alveolar Echinococcosis.

    Get PDF
    Infection of humans by the larval stage of the tapeworms Echinococcus granulosus sensu lato or Echinococcus multilocularis causes the life-threatening zoonoses cystic echinococcosis (CE) and alveolar echinococcosis (AE). Although cystic liver lesions are a hallmark of both diseases, course, prognosis, and patients' management decisively differ between the two. The wide and overlapping spectrum of morphologies and the limited availability of ancillary tools are challenges for pathologists to reliably diagnose and subtype echinococcosis. Here, we systematically and quantitatively recorded the pathologic spectrum in a clinically and molecularly defined echinococcosis cohort (138 specimens from 112 patients). Immunohistochemistry using a novel monoclonal antibody (mAbEmG3) was implemented, including its combined application with the mAbEm2G11. Six morphologic criteria sufficiently discriminated between CE and AE: size of smallest (CE/AE: >2/≤2 mm) and largest cyst (CE/AE: >25/≤25 mm), thickness of laminated layer (CE/AE: >0.15/≤0.15 mm) and pericystic fibrosis (CE/AE: >0.6/≤0.6 mm), striation of laminated layer (CE/AE: moderate-strong/weak), and number of cysts (CE/AE: ≤9/>9). Combined immunohistochemistry with mAbEm2G11 (E. multilocularis specific) and mAbEmG3 (reactive in AE and CE) was equally specific as and occasionally more sensitive than polymerase chain reaction. On the basis of these findings, we developed a diagnostic algorithm for the differential diagnosis of echinococcosis. In summary, we have not only identified the means to diagnose echinococcosis with greater certainty, but also defined morphologic criteria, which robustly discriminate between CE and AE. We expect our findings to improve echinococcosis diagnostics, especially of challenging cases, beneficially impacting the management of echinococcosis patients

    Photometric Reverberation Mapping of the Broad Emission Line Region in Quasars

    Full text link
    A method is proposed for measuring the size of the broad emission line region (BLR) in quasars using broadband photometric data. A feasibility study, based on numerical simulations, points to the advantages and pitfalls associated with this approach. The method is applied to a subset of the Palomar-Green quasar sample for which independent BLR size measurements are available. An agreement is found between the results of the photometric method and the spectroscopic reverberation mapping technique. Implications for the measurement of BLR sizes and black hole masses for numerous quasars in the era of large surveys are discussed.Comment: 19 pages, 17 figures; published versio

    Space Telescope and Optical Reverberation Mapping Project. IV. Anomalous Behavior of the Broad Ultraviolet Emission Lines in NGC 5548

    Get PDF
    During an intensive Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS) UV monitoring campaign of the Seyfert 1 galaxy NGC 5548 performed from 2014 February to July, the normally highly correlated far UV continuum and broad emission line variations decorrelated for ~60–70 days, starting ~75 days after the first HST/COS observation. Following this anomalous state, the flux and variability of the broad emission lines returned to a more normal state. This transient behavior, characterized by significant deficits in flux and equivalent width of the strong broad UV emission lines, is the first of its kind to be unambiguously identified in an active galactic nucleus reverberation mapping campaign. The largest corresponding emission line flux deficits occurred for the high ionization, collisionally excited lines C iv and Si IV(+O IV]), and also He II(+O III]), while the anomaly in Lyα was substantially smaller. This pattern of behavior indicates a depletion in the flux of photons with Eph \u3e 54 eV relative to those near 13.6 eV. We suggest two plausible mechanisms for the observed behavior: (i) temporary obscuration of the ionizing continuum incident upon broad line region (BLR) clouds by a moving veil of material lying between the inner accretion disk and inner (BLR), perhaps resulting from an episodic ejection of material from the disk, or (ii) a temporary change in the intrinsic ionizing continuum spectral energy distribution resulting in a deficit of ionizing photons with energies \u3e 54 eV, possibly due to a transient restructuring of the Comptonizing atmosphere above the disk. Current evidence appears to favor the latter explanation

    AGN STORM 2: V. Anomalous Behavior of the CIV Light Curve in Mrk 817

    Full text link
    An intensive reverberation mapping campaign on the Seyfert 1 galaxy Mrk817 using the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST) revealed significant variations in the response of the broad UV emission lines to fluctuations in the continuum emission. The response of the prominent UV emission lines changes over a \sim60-day duration, resulting in distinctly different time lags in the various segments of the light curve over the 14 months observing campaign. One-dimensional echo-mapping models fit these variations if a slowly varying background is included for each emission line. These variations are more evident in the CIV light curve, which is the line least affected by intrinsic absorption in Mrk817 and least blended with neighboring emission lines. We identify five temporal windows with distinct emission line response, and measure their corresponding time delays, which range from 2 to 13 days. These temporal windows are plausibly linked to changes in the UV and X-ray obscuration occurring during these same intervals. The shortest time lags occur during periods with diminishing obscuration, whereas the longest lags occur during periods with rising obscuration. We propose that the obscuring outflow shields the ultraviolet broad lines from the ionizing continuum. The resulting change in the spectral energy distribution of the ionizing continuum, as seen by clouds at a range of distances from the nucleus, is responsible for the changes in the line response.Comment: 20 pages, 8 figures, submitted to Ap

    AGN STORM 2. I. First results: A Change in the Weather of Mrk 817

    Get PDF
    We present the first results from the ongoing, intensive, multiwavelength monitoring program of the luminous Seyfert 1 galaxy Mrk 817. While this active galactic nucleus was, in part, selected for its historically unobscured nature, we discovered that the X-ray spectrum is highly absorbed, and there are new blueshifted, broad, and narrow UV absorption lines, which suggest that a dust-free, ionized obscurer located at the inner broad-line region partially covers the central source. Despite the obscuration, we measure UV and optical continuum reverberation lags consistent with a centrally illuminated Shakura–Sunyaev thin accretion disk, and measure reverberation lags associated with the optical broad-line region, as expected. However, in the first 55 days of the campaign, when the obscuration was becoming most extreme, we observe a de-coupling of the UV continuum and the UV broad emission-line variability. The correlation recovered in the next 42 days of the campaign, as Mrk 817 entered a less obscured state. The short C IV and Lyα lags suggest that the accretion disk extends beyond the UV broad-line region. Unified

    Space Telescope and Optical Reverberation Mapping Project. VI. : reverberating disk models for NGC 5548

    Get PDF
    D.A.S. and K.D.H. acknowledge support from the UK Science and Technology Facilities Council through grant ST/K502339/1 and ST/J001651/1.We conduct a multiwavelength continuum variability study of the Seyfert 1 galaxy NGC 5548 to investigate the temperature structure of its accretion disk. The 19 overlapping continuum light curves (1158 Å to 9157 Å) combine simultaneous Hubble Space Telescope, Swift, and ground-based observations over a 180 day period from 2014 January to July. Light-curve variability is interpreted as the reverberation response of the accretion disk to irradiation by a central time-varying point source. Our model yields the disk inclination i = 36° ± 10°, temperature T1 =(44 ± 6) x 103 K at 1 light day from the black hole, and a temperature–radius slope (T α r-α) of α = 0.99 ± 0.03. We also infer the driving light curve and find that it correlates poorly with both the hard and soft X-ray light curves, suggesting that the X-rays alone may not drive the ultraviolet and optical variability over the observing period. We also decompose the light curves into bright, faint, and mean accretion-disk spectra. These spectra lie below that expected for a standard blackbody accretion disk accreting at L/LEdd=0.1.PostprintPeer reviewe
    corecore