33,482 research outputs found
Catalytic RNA and synthesis of the peptide bond
We are studying whether the L-19 IVS ribozyme from Tetrahymena thermophila can catalyze the formation of the peptide bond when it is supplied with synthetic aminoacyl oligonucleotides. If this reaction works, it could give us some insight into the mechanism of peptide bond formation and the origin of coded protein synthesis. Two short oligoribonucleotides, CCCCC and a protected form of CCCCU were prepared; the former was made by the controlled hydrolysis of Poly(C), and the later by multistep chemical synthesis from the protected monomers. The homopentamer was then aminocylated using C-14 labelled Boc-protected glycine imidazolide. This aminoacylated oligo-nucleotide has now been shown to enter the active site of the L-19 IVS, and aminoacyl transfer, and peptide bond formation reactions are being sought. Our synthesis of CCCCU made us aware of the inadequacy of many of the 2'- hydroxyl protecting groups that are in use today and we therefore designed a new 2'- protecting group that is presently being tested
Distance and Similarity Measures for Soft Sets
In [P. Majumdar, S. K. Samanta, Similarity measure of soft sets, New
Mathematics and Natural Computation 4(1)(2008) 1-12], the authors use matrix
representation based distances of soft sets to introduce matching function and
distance based similarity measures. We first give counterexamples to show that
their Definition 2.7 and Lemma 3.5(3) contain errors, then improve their Lemma
4.4 making it a corllary of our result. The fundamental assumption of Majumdar
et al has been shown to be flawed. This motivates us to introduce set
operations based measures. We present a case (Example 28) where
Majumdar-Samanta similarity measure produces an erroneous result but the
measure proposed herein decides correctly. Several properties of the new
measures have been presented and finally the new similarity measures have been
applied to the problem of financial diagnosis of firms.Comment: 14 pages, accepted manuscript, to appear in New Mathematics and
Natural Computatio
Myelin figures: the buckling and flow of wet soap
Myelin figures are interfacial structures formed when certain surfactants
swell in excess water. Here, I present data and model calculations suggesting
myelin formation and growth is due to the fluid flow of surfactant, driven by
the hydration gradient at the dry surfactant/water interface; a simple model
based on this idea qualitatively reproduces the various myelin growth behaviors
observed in different experiments. From a detailed experimental observation of
how myelins develop from a planar precursor structure, I identify a mechanical
instability that may underlie myelin formation. These results indicate the
mixed mechanical character of the surfactant lamellar structure, where fluid
and elastic properties coexist, is what enables the formation and growth of
myelins.Comment: 11 pages, 10 figures, to appear in Phys. Rev. E. Corrected
figures/typo
3D Modeling of the Magnetization of Superconducting Rectangular-Based Bulks and Tape Stacks
In recent years, numerical models have become popular and powerful tools to
investigate the electromagnetic behavior of superconductors. One domain where
this advances are most necessary is the 3D modeling of the electromagnetic
behavior of superconductors. For this purpose, a benchmark problem consisting
of superconducting cube subjected to an AC magnetic field perpendicular to one
of its faces has been recently defined and successfully solved. In this work, a
situation more relevant for applications is investigated: a superconducting
parallelepiped bulk with the magnetic field parallel to two of its faces and
making an angle with the other one without and with a further constraint on the
possible directions of the current. The latter constraint can be used to model
the magnetization of a stack of high-temperature superconductor tapes, which
are electrically insulated in one direction. For the present study three
different numerical approaches are used: the Minimum Electro-Magnetic Entropy
Production (MEMEP) method, the -formulation of Maxwell's equations and the
Volume Integral Method (VIM) for 3D eddy currents computation. The results in
terms of current density profiles and energy dissipation are compared, and the
differences in the two situations of unconstrained and constrained current flow
are pointed out. In addition, various technical issues related to the 3D
modeling of superconductors are discussed and information about the
computational effort required by each model is provided. This works constitutes
a concrete result of the collaborative effort taking place within the HTS
numerical modeling community and will hopefully serve as a stepping stone for
future joint investigations
High-Mobility Few-Layer Graphene Field Effect Transistors Fabricated on Epitaxial Ferroelectric Gate Oxides
The carrier mobility \mu of few-layer graphene (FLG) field-effect transistors
increases ten-fold when the SiO_2 substrate is replaced by single-crystal
epitaxial Pb(Zr_0.2Ti_0.8)O_3 (PZT). In the electron-only regime of the FLG,
\mu reaches 7x10^4 cm^2/Vs at 300K for n = 2.4x10^12/cm^2, 70% of the intrinsic
limit set by longitudinal acoustic (LA) phonons; it increases to 1.4x10^5
cm^2/Vs at low temperature. The temperature-dependent resistivity \rho(T)
reveals a clear signature of LA phonon scattering, yielding a deformation
potential D = 7.8+/-0.5 eV.Comment: 5 pages, 4 figure
On the possibility of superconductivity in PrBa2Cu3O7
Recent reports about observations of superconductivity in PrBa2Cu3O7 raise a
number of questions: (i) of various theories striving to explain the Tc
suppression in PrxY{1-x}Ba2Cu3O7, are there any compatible with possible
superconductivity in stoichiometric PrBa2Cu3O7? (ii) if this superconductivity
is not an experimental artifact, are the superconducting carriers (holes) of
the same character as in the other high-Tc cuprates, or do they represent
another electronic subsystem? (iii) is the underlying mechanism the same as in
other high-Tc superconductors? I present an answer to the first two questions,
while leaving the last one open.Comment: 4 pages 4 eps fig
The role of the N*(1535) resonance and the pi^- p --> KY amplitudes in the OZI forbidden pi N --> phi N reaction
We study the pi N --> phi N reaction close to the phi N threshold within the
chiral unitary approach, by combining the pi^- p --> K^+ Sigma^-, pi^- p -->
K^0 Sigma^0 and pi^- p --> K^0 Lambda amplitudes with the coupling of the phi
to the K components of the final states of these reactions via quantum loops.
We obtain a good agreement with experiment when the dominant pi^- p --> K^0
Lambda amplitude is constrained with its experimental cross section. We also
evaluate the coupling of the N*(1535) to phi N and find a moderate coupling as
a consequence of partial cancellation of the large KY components of the
N*(1535). We also show that the N*(1535) pole approximation is too small to
reproduce the measured cross section for the pi N --> phi N reaction.Comment: 10 pages, 6 figure
- …