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We study the πN → φN reaction close to the φN threshold within the chiral unitary approach,
by combining the π−p → K+Σ−, π−p → K0Σ0 and π−p → K0Λ amplitudes with the coupling of
the φ to the K components of the final states of these reactions via quantum loops. We obtain a
good agreement with experiment when the dominant π−p → K0Λ amplitude is constrained with
its experimental cross section. We also evaluate the coupling of the N∗(1535) to φN and find a
moderate coupling as a consequence of partial cancellation of the large KY components of the
N∗(1535). We also show that the N∗(1535) pole approximation is too small to reproduce the
measured cross section for the π−N → φN reaction.

PACS numbers: 14.20.Gk, 12.39.Fe, 13.60.Le, 14.40.Cs

I. INTRODUCTION

The π−p → φn reaction, assuming the φ a pure ss̄
state, is OZI forbidden and, as a consequence, it should
have a very small cross section compared to analogous
OZI allowed ones. Actually, the π−p → φn cross section
close to threshold [1] is about a factor fifty smaller than
that of the π−p → ωn reaction [2, 3, 4]. Yet, that cross
section is still less suppressed than one might expect.
The usual way reactions escape the OZI restrictions is
through intermediate steps (like loops) which make the
initial state couple to some state with both u, d and s
quarks, which in a second step couples to the pure ss̄ of
the φ. This is the case for instance for the φ → π0π0γ
reaction [5, 6], which is reproduced fairly well in terms
of kaon loops where the kaons couple to the φ on one
side and to the nonstrange components on the other side
[7, 8, 9].

In [10] it was suggested that the agent responsible for
the relatively large π−p → φn cross section was the
N∗(1535) resonance which should have a large coupling
to the φN system. The reasoning behind this sugges-
tion was the large coupling of the N∗(1535) to meson
baryon states with strangeness, in simpler words the large
ss̄ content of the N∗(1535). Indeed, the analysis of the
J/ψ → p̄ΛK+ decay and the pp → pΛK+ reaction near
threshold concluded that the N∗(1535) resonance has a
significant coupling to KΛ [11]. The analyses [12, 13] of
the recent SAPHIR and CLAS γp → K+Λ data [14, 15]
also show a large coupling of the N∗(1535) to KΛ. The
other reason to support the relevant role of the N∗(1535)
is that the higher energy S11 resonance, the N∗(1650)
couples very weakly to ηN and KΛ [16].

From another perspective, chiral unitary theories pro-
vide the N∗(1535) as a dynamically generated state from
the interaction of the octet of the pseudoscalar mesons
and the octet of stable baryons [17, 18, 19, 20, 21] and
the large coupling of the resonance to the ηN , KΛ and

KΣ stems naturally from the information of the chiral
lagrangians [22, 23] used as input. Indeed, the good re-
production of the γp→ K+Λ and γp→ K+Σ within the
chiral unitary approach, using the complete set of Feyn-
man diagrams demanded by gauge invariance [24], comes
to stress the role of the dynamically generated N∗(1535)
resonance in these reactions.

The claim of a nature as a dynamically generated res-
onance for the N∗(1535) can be interpreted as having
the resonance largely build up of meson baryon compo-
nents, which play the dominant role in reactions taking
place at low energies. There are indications that some
extra conventional three constituent quark components
are also present in the resonance [25]. These components
would show up at large Q2 in the electroproduction he-
licity form factors where the picture of the N∗(1535) as
purely dynamically generated resonance produces a too
fast fall down [26].

The purpose of the present paper is to do further re-
search regarding the idea of [10] by using the chiral uni-
tary approach [20] where the N∗(1535) resonance is dy-
namically generated. Similarly to the successful approach
of [7, 8, 9] in the description of the φ→ π0π0γ reaction,
here we shall also have the N∗(1535) coupling to the KΛ
and KΣ components which later on will couple to the φn
system. Technically, this means the reaction will proceed
via loops of KΛ and KΣ. The work of [26], which studies
the N∗(1535) → γ N transition, is also useful here since
making use of the vector meson dominance hypothesis
we can replace a photon by a φ, with the appropriate
conversion factors, and this will provide the coupling of
the resonance to φn, which in [10] was extracted from
the π−p→ φn data.

Parallely we shall conduct another study in which we
shall use the full and energy dependent amplitude pro-
vided by the chiral unitary approach, instead of the cou-
plings from the N∗ pole position. The two procedures
should be identical should the N∗(1535) resonance dom-
inate absolutely the π−p → φn reaction. However, the
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chiral unitary approach, which provides some resonances
appearing as poles of the scattering matrix, not only
provides the poles but simultaneously generates a back-
ground which is relevant as soon as we move away from
the resonance region. In this sense, since the N∗(1535)
resonance is about 400 MeV below the φn threshold,
one should expect some differences between these two
approaches and we shall investigate them.

II. FORMALISM

A. Meson baryon transition

In the present model, the φ meson is produced by the
coupling of the vector meson to intermediate loops, which
are provided by a unitary meson-baryon amplitude in
coupled channels, with the interaction derived from the
lowest order chiral Lagrangian. For the meson-baryon
amplitude, we follow closely the approach used in Ref.
[20]. The idea for the present study of πN → φN is that
the coupled channel approach provides πN → KΛ, KΣ
transitions, with final states to which the φ can couple
according to its main decay channel φ→ K̄K.

We have the coupled channels K+Σ−, K0Σ0, K0Λ,
π−p, π0n and ηn for the net charge zero case, and π0p,
π+n, ηp, K+Σ0, K+Λ, and K0Σ+ for the net charge
+1 case. The meson baryon scattering amplitude is de-
scribed in Ref. [20] by means of the Bethe-Salpeter equa-
tion for meson baryon scattering given by

T = V + V GT . (1)

Based on the N/D method and the dispersion relation
[27], this integral scattering equation can be reduced to
a simple algebraic equation

T = (1 − V G)−1 V (2)

where T is a matrix in the coupled channels i, j that
provides the unitary amplitude. The matrix V is the s-
wave meson-baryon interaction provided by the lowest or-
der of chiral perturbation theory, which is the Weinberg-
Tomozawa interaction,

Vij = −Cij
1

4f2
(2
√
s−Mi −Mj)

×
√

Mi + E

2Mi

√

Mj + E′

2Mj
(3)

with the channel indices i, j, the baryon mass M , the
meson decay constant f and the center of mass energy√
s. The coefficients Cij are the coupling strengths de-

termined by the SU(3) group structure of the channels
and are given in [20]. The diagonal matrix G is a meson
baryon loop function given in terms of meson and baryon

propagators by

G(
√
s) = i

∫

d4q

(2π)4
M

E(~q)

1

q0 − E(~q) + iǫ

× 1

(P − q)2 −m2 + iǫ
(4)

with the total energy P = (
√
s, 0, 0, 0) in the center of

mass frame and the meson mass m. For the baryon prop-
agator, we use a nonrelativistic form, slightly different
from Eq. (4). Details of the nonrelativistic approxima-
tion can be found in a recent discussion in Ref. [26].
In dimensional regularization, the loop function in each
channel i is given by the following analytic expression:

Gi = i

∫

d4q

(2π)4
2Mi

q2 −M2
i + iǫ

1

(P − q)2 −m2
i + iǫ

=
2Mi

16π2

{

ai(µ) + ln
M2

i

µ2
+
m2

i −M2
i + s

2s
ln
m2

i

M2
i

+

+
q̄i√
s

[

ln(s− (M2
i −m2

i ) + 2q̄i
√
s)

+ ln(s+ (M2
i −m2

i ) + 2q̄i
√
s)

− ln(−s+ (M2
i −m2

i ) + 2q̄i
√
s)

− ln(−s− (M2
i −m2

i ) + 2q̄i
√
s)

]}

, (5)

where q̄i is the 3-momentum of the meson or baryon
in the center of mass frame, µ is the scale of dimen-
sional regularization and ai(µ) are subtraction constants,
which are determined by a fit to the S11 and S31 partial
waves of πN scattering [20]. There are four independent
subtraction constants in Ref. [20], one for each inter-
mediate state, taking just one subtraction constant for
states belonging to the the same isospin multiplet. Thus
the free parameters of the theory are aπN , aKΣ, aKΛ,
aηN . Once these constants are fixed to the πN scatter-
ing data, the amplitudes involving vector mesons, as well
as strangeness production according to πN → KΛ,KΣ,
can be predicted without introducing any new free pa-
rameters. The values of the subtraction constants can be
found in Ref. [20] or Sec. III C.

In this study we will make no attempt to introduce
the ππN channel or modify the interaction with a form
factor as done in Ref. [20]. This is because these modi-
fications cannot easily be extended to the high energies
of φ production. Also, the influence of the ππN channel
has been found rather small in isospin 1/2 (the reaction
of interest, πN → φN , is in pure isospin 1/2).

The amplitudes T ij from Eq. (2) can be analytically
continued to the complex plane of the scattering energy
s1/2. The amplitude has a pole on the second Riemann
sheet that is identified with the resonance. Around the
position of the pole at the complex value M∗, the ampli-
tude can be expanded according to

T ij
pole =

gigj

s1/2 −M∗
. (6)
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(a) (b)

FIG. 1: Phi (wavy line) couplings to the meson baryon am-
plitude (shaded circle) via KΛ and KΣ loops (and πN loops
for the ρ). Left: Kroll-Ruderman term, right: meson pole
term. The shaded circles represent the unitarized amplitude
πN → KY, πN .

The expression in the numerator, which is given by
the residue of the amplitude, determines the coupling
strengths gi of the resonance to the different channels.

The pole positions of the resonance have been obtained
in Ref. [26] at

M∗ = 1537 − 37 i MeV (7)

for the n∗ (neutral charge) and

M∗ = 1532 − 37 i MeV (8)

for the p∗ (+1 charge). The values of the coupling con-
stants gi are listed in Ref. [26]. It turns out that the
N∗(1535) couples strongly to KΛ and KΣ and thus has
large strangeness components.

We will refer to the expansion in Eq. (6) as pole ap-

proximation in the following. Close to the pole position,
Eq. (6) will be a good approximation while further away
the full amplitude might become quite different from a
resonant shape. For example, even at s1/2 = 1535 MeV
the resonant shape of the N∗(1535) of Eq. (6) is already
modified by a considerable background in πN scattering.

Note that Eq. (6) provides only a first order approxi-
mation and does not take into account the energy depen-
dence of the width. We will further discuss this issue in
Secs. III B and IV.

B. Vector meson couplings

In order to construct the transition πN → φN , the φ
is coupled to the kaon loops provided by the unitarized
amplitude from Eq. (2). This is schematically shown in
Fig. 1. For completeness, we will also consider the vector
mesons ω and ρ. The coupling of the vector mesons fol-
lows a similar scheme as in the case of photons, obeying
similar constraints from gauge invariance as the photon.
This requires, in principle, to couple the vector mesons
to all possible meson and baryon propagators and ver-
tices provided in the rescattering series from Eq. (2). In
a recent study [26], the electromagnetic form factors of
the N∗(1535) have been evaluated. There, some of the
diagrams turn out to be of next-to-leading order. Only
the diagrams shown in Fig. 1 are of leading order. In
practice, it is enough to calculate the meson pole term
on the righthand side. Indeed, imposing gauge invari-
ance, the contribution from the Kroll-Ruderman term

can be taken into account without any explicit calcula-
tion. Then, the diagrams from Fig. 1 form a gauge in-
variant subset of leading order diagrams. For a detailed
discussion on gauge invariance and subleading terms, see
Ref. [26]. The main point when adapting the formalism
from photons to vector mesons is that the virtuality of
the photon corresponds to the meson mass, −Q2 = m2

V .
The transition amplitude, involving vector mesons, can

be written as

T = T µν σµ ǫν (9)

where σµ ≡ (0, ~σ) is the spin operator of the baryon and ǫ
the polarization vector of the vector meson (V). Lorentz
invariance implies the amplitude to be of the general form
[7, 28, 29]

− i T µν = a gµν + b PµP ν + c Pµkν + dP νkµ + e kµkν

(10)

where P is the total fourmomentum and k is the momen-
tum of the vector meson. Using the Lorentz condition
ǫµ kµ = 0 and the fact that σµ Pµ = 0 in the c.m. frame,
the amplitude turns out to be

− i T = −a ~σ · ~ǫ− d ~σ · ~k ǫ0 P 0. (11)

In the following, we neglect the second term which is pro-
portional to the momentum of the vector meson k, i.e.
small close to the threshold of vector meson production.
Contracting the amplitude T µν with kν , i.e. replacing
ǫν → kν , we obtain from the gauge invariance two con-
ditions for the coefficients a to e and in particular

a = −dP · k − e k2. (12)

Thus, the coefficient a can be determined from d and e.
Evaluating d and e has the advantage that the contribu-
tions of loop amplitudes to these coefficients appear with
two powers of loop momenta less than in case of a as one
directly see from Eq. (10). In particular, the sum of the
transition loops with φ couplings are finite and require
no renormalization.

In the present, nonrelativistic, formulation, the lead-
ing terms of the 1/M expansion are given by the two
diagrams in Fig. 1. As the Kroll-Rudermann term only
contributes to a, it is enough to calculate d and e from
the meson pole term and then use Eqs. (11) and (12) in
order to evaluate the amplitude. The calculation of the
meson pole term for finite k is described in detail in Ref.
[26]. Here, we only display the final result which is sim-
ilar to the expressions in Ref. [26]. For the MBB and
the VMM [30, 31] vertices we have used the interaction
Lagrangians

LMBB = − D√
2f

Tr
[

B̄γµγ5{∂µΦ, B}
]

− F√
2f

Tr
[

B̄γµγ5[∂
µΦ, B]

]

LV MM =
i GV mV√

2 f2
Tr(V µ [∂µP, P ]) (13)
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respectively. The matrices V and P represent the fields of
vector and pseudoscalar mesons, respectively. An explicit
expression for V can be found in Ref. [30], the meson and
baryon matrices Φ ≡ P and B can be found in Ref. [26].

The total amplitude for the process πN → φN is given
by

T i
tot =

∑

i

T ijaj (~σ · ~ǫ) (14)

with T ij being the unitarized MB → MB transition
from Eq. (2) [i = 4 for the initial state π−p], aj is given
by Eq. (12) and the sum is over all channels j for the
intermediate meson baryon state, i.e. the loop shown in
Fig. 1. The coefficients d and e are given by

dj =
Aj g

j
A gV

16π2

1
∫

0

dx

x
∫

0

dy
2Mj(1 − y)(1 − x)

S + iǫ
,

ej =
Aj g

j
A gV

16π2

1
∫

0

dx

x
∫

0

dy
Mj(1 − y)(2y − 1)

S + iǫ
(15)

where

S = P 2x(1 − x) + k2y(1 − y) −M2
j (1 − x)

− m2
jx− 2P · k(1 − x)y. (16)

The meson and baryon masses of the loop are given by
mj and Mj . The axial coupling constants gj

A from the
MBB Lagrangian can be directly taken from Table III
of Ref. [26]. The relevant coefficients from the VMM

couplings Aj are Aφ
j = 1/(

√
2 f) and Aω

j = −1/(2 f)
for φ and ω production, in all channels j with kaons, and
zero otherwise. For the ρ0 case, Aρ0 = −1/(2 f) for loops
with K+, Aρ0 = +1/(2 f) for loops with K0, Aρ0 = 1/f
for the loop with π−, and Aρ0 = −1/f for the loop with
π+. The coefficient Aρ0 = 0 for channels with π0 and η.
In Eq. (15),

gV =
mV GV

f2
(17)

where the vector coupling strength GV = 56 MeV, mV

is the mass of the vector meson, and f = 93 MeV.
So far, we have determined the amplitude for the re-

action πN → φN . We can also evaluate the effective
coupling strengths gφN , gωN , and gρ0N of the N∗(1535)
to the vector mesons. If in Eq. (14) we substitute T ij

by its pole approximation of Eq. (6) and T i
tot by its pole

approximation

T i
PA =

gi gV N∗

s1/2 −M∗
(~σ · ~ǫ), (18)

we obtain

gV N∗ =
∑

j

aj gj (19)

TABLE I: The coupling of the φ to the N∗(1535). For com-
pleteness, we also show the predictions for the ρNN∗(1535)
and ωNN∗(1535) couplings.

gVB→N∗(1535)

this study other studies

φp 0.03 − 0.15 i

φn 0.04 − 0.17 i

ωp −0.03 + 0.15 i

ωn −0.03 + 0.16 i

ρ0p 0.63 − 0.04 i 0.69 to 0.89 a [16], ±1.12b [10]

ρ0n −0.64 + 0.04 i

aextraction from PDB without ρ form factor.
bin agreement with the PDB [16], implying a form factor for the

offshell ρ.

where the gj are the coupling strengths of the N∗(1535)
to the coupled channels of the model as determined from
the residue of the pole according to Eq. (6). In Sec. III A
we will show results for the effective couplings of vector
mesons to the N∗(1535).

Since the pole approximation is only good close to the
pole, we should not use Eq. (18) as a substitute of Eq.
(14) which relies upon the full T ij amplitudes, quite dif-
ferent to their pole approximation when we move away
from the pole as it is the case here.

In the derivation of the amplitude we have neglected
the term with d in Eq. (11) that vanishes at the threshold
of vector meson production. Consequently, we evaluate
the intermediate loop at the threshold, s1/2 = mV +M .
Furthermore, we have k2 = m2

V and P · k = mV (mV +
M). Then, the entire energy dependence for the reaction
πN → φN comes from the unitarized amplitude from
Eq. (2) or, in case of the pole approximation, from the
denominator in Eq. (18).

III. RESULTS

A. The couplings strengths of the N∗(1535)

The coupling strengths of the N∗(1535) to φN , ωN ,
and ρN are displayed in Table I. These values are valid
at the respective vector meson production thresholds due
to the approximations made in Sec. II B. Yet, their size
is a good approximation in the vicinity of the thresholds

as the omitted term of the form ǫ0 ~σ ·~k is small for small
momenta ~k of the vector meson. The calculation has
been done in the particle base, which allows for isospin
breaking from different masses. However, this effect is
negligible and the values in Table I are almost isospin
symmetric, i.e., same size and sign for the φN and ωN
couplings, N = (p, n), and same size and opposite sign
for the ρ0N couplings.



5

The ρN coupling, predicted in the present study, is in
good agreement with the value extracted from the PDB
[16] within experimental uncertainties. To show this we
write the width of the N∗(1535) decaying into ρN in s-
wave,

ΓN∗
→(Nρ[ππ])s

=
3MN

MN∗

g2
ρ0p f

2
ρ

8π3

MN∗−MN
∫

2mπ

dMI pN k̃

× M2
I − 4m2

π
(

M2
I −m2

ρ

)2
+ (MI Γρ)

2
(20)

where

pN =
λ1/2(M2

N∗ , M2
N , M

2
I )

2MN∗

(21)

and k̃ = (M2
I − 4m2

π)1/2/2 and fρ is the coupling of the
ρ0 to two pions, fρ = 6.02, while gρ0p is the coupling
(gρ0p ~σ · ~ǫ) of the N∗(1535) to ρ0p.

Taking the branching ratio of 0.02 quoted in Ref. [16]
and the width ΓN∗ = 150 MeV we obtain gρN = 0.89,
and if we take ΓN∗ = 90 MeV we obtain gρN = 0.69.
Given the large span of the branching ratio quoted in
Ref. [16], the result that we obtain is consistent with
present experimental data on this magnitude. This is a
good signal that our predicted couplings are realistic.

The coupling of 1.12 reported in Ref. [10] is equivalent
to ours because in Ref. [10] an extra form factor for
the off shell ρ is implemented, whose omission leads to
the same value of gρN = 0.89 found here. We do not
have explicitly this form factor since the loop calculations
incorporate automatically any off shell dependence. In
our case the dependence of this coupling on the mass of
the ρ is moderate, and changes of the mass by about
50 MeV do not change appreciably the coupling. Even
going to a value of s1/2 = 1535 MeV there is less than 20
% decrease in the modulus of the value of the coupling
reported in Table I.

The ρ couples to both the πN and the KY channels of
the N∗(1535) via the loops shown in Fig. 1. Omitting the
KY loops, the modulus of the ρNN∗(1535) coupling con-
stant decreases by 40 % and is not in agreement with the
PDG value any more. This shows that the strangeness
channels in the N∗(1535) play an important role.

The couplings to ωN and φN are smaller than gρN .
The reason is, in case of the φN and ωN couplings, that
for the KΛ intermediate state the combination of the
N∗KΛ vertex, together with the K̄Kφ and KΛN ver-
tices, almost cancels the corresponding combination from
the KΣ intermediate loop. This is not the case for the
coupling of the N∗(1535) to ρN . See also Sec. IV for an
estimate of the theoretical errors of gφN .

At the higher energies of φ production, the picture
completely changes, because one should rely on the full,
and energy dependent, amplitude MB → MB rather
than on the couplings gKY that are extracted at the pole
of the N∗(1535). At the high energies of φ production,

2000 2200 2400 2600 2800
s

 1/2
 [MeV]

0.0001

0.001

0.01

0.1

σ 
[m

b]

π _
 p -->  φ n

FIG. 2: Reaction π−p → φn. The solid line shows the result
using the full, energy dependent amplitude, while the dashed-
dotted line shows the pole approximation. The dashed line
shows the result using the full amplitude after a readjustment
of the subtraction constants, as described in Sec. IIIC. The
complete data reference can be found in Ref. [1].

the contributions from theKΛ andKΣ channel no longer
cancel, and the cross section from the full amplitude is
much larger than the one from the pole approximation,
which relies on the couplings extracted at the pole posi-
tion. This issue will be further discussed in the following
subsections.

The couplings of the N∗(1535) to KY , πN , and ηN
can be found in Ref. [26]. Together with the val-
ues from Table I, we can summarize some properties
of the N∗(1535) in a schematic ordering of its cou-
pling strengths according to gKΣ, gKΛ, gηN > gπN , gρN >
gωN , gφN . While the large KY, ηN couplings are respon-
sible for the formation of the dynamically generated pole,
we have found that the coupling to ρN is of the size
of πN , i.e. smaller. This also means that including
the ρN channel in the coupled channel approach would
not change much the properties of the N∗(1535) and the
channel space used in Ref. [20] is sufficiently large.

The ωN coupling to the N∗(1535) in Table I is quite
small. It has been shown recently [32] that it is difficult
to extract this coupling phenomenologically in an unam-
biguous way.

B. φ and strangeness production

The φ production is shown in Figs. 2 and 3. The
process πN → φN is in pure isospin 1/2 and we would
expect very similar results for π−p → φn and π+n →
φp. This is indeed the case both for the data and the
theoretical curves as Figs. 2 and 3 show.

The solid lines show the results using the full solution
of the Bethe-Salpeter equation (2) for the T ij amplitudes
in Eq. (14), while the dashed-dotted lines represent the
N∗(1535) pole approximation of the MB → MB tran-
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2000 2200 2400 2600 2800
s

 1/2
 [MeV]

0.0001

0.001

0.01

0.1
σ 

[m
b]

π +
 n -->  φ p

FIG. 3: Reaction π+n → φp. Theoretical curves as described
in Fig. 2. Complete data reference in Ref. [1], except the
squares which are from Ref. [33].

sition from Eqs. (6,18). The dashed line shows the out-
come after a readjustment of the parameters discussed in
Sec. III C.

The smallness of the result when using the pole ap-
proximation is consistent with the small value that we
obtain for the coupling in Table I, |gφN | = 0.17. As a
reference, this value is about one order of magnitude be-
low the value determined in a fit to φN data in Ref. [10],
gφN = 1.2 although our pole approximation and the ap-
proach of Ref. [10] are rather different as we explain be-
low. However, this gives us a rough idea of values needed
to get a fit to the πN → φN data assuming it provided
by the N∗(1535) resonance alone.

If we use the full solution of the Bethe-Salpeter equa-
tion (2) instead of the pole approximation from Eq. (18),
we obtain the solid lines in Figs. 2 and 3. The result is
much larger due to the following reasons: First, the form
of the pole approximation from Eq. (6) makes the contri-
bution automatically small 400 MeV above the nominal
mass of the N∗(1535). Second, the smallness of gφNN∗

has been traced back to a cancellation of KΛ and KΣ
intermediate loops as discussed in Sec. III A. In the
full, energy dependent amplitude, this cancellation is no
longer valid at s1/2 ∼ 2 GeV. As a consequence, the pole
of the N∗(1535) plays a minor role compared to the full
amplitude which delivers a solution much closer to the
φN production data.

What we learn from there is that the pole approxi-
mation of Eq. (18) for the πN → φN reaction is quite
bad, as a consequence of which the concept of the φN∗

coupling that we obtain is not very useful. In Ref. [10]
an empirical amplitude mediated by the N∗(1535) ex-
citation is used, with a Breit-Wigner form of the type
of Eq. (18), but incorporating the energy dependent
width and an extra form factor. In Ref. [10] several
options were studied, including the possibility of having
contributions from other resonances, like the N∗(1650),
N∗(1710), N∗(1720), N∗(1900) but using different argu-

ments the dominance of the N∗(1535) was suggested and
the model based upon single N∗(1535) excitation was
then used to study the pp→ ppφ reaction. The coupling
gφN∗ of the amplitude of Ref. [10] is fitted to reproduce
the πN → φN data. This is a parametrization of some
data with a specific form of an amplitude which is dif-
ferent to our pole approximation of Eq. (18) or the full
amplitude of Eq. (14). Hence the comparison of the cou-
pling gφN∗ obtained in Ref. [10] and the one found here
would be improper. However, even with the differences in
the amplitudes, one can qualitatively understand, from
the results in Figs. 2 and 3 with the simple pole approxi-
mation, why a larger φN∗ coupling is needed in Ref. [10]
to reproduce empirically the πN → φN data.

The important point, that we should stress here, is that
the chiral unitary approach, adjusting only a few subtrac-
tion constants around the N∗(1535) energy region to fit
the πN → πN data, is able to make a prediction for the
πN → φN cross section close to φN threshold, within a
factor of two, without the need to fit any extra parame-
ters. The model of Ref. [10] is a parametrization of the
data of πN → φN assuming N∗(1535) dominance. It is
an effective parametrization of the full πN → φN am-
plitude with a single resonance. However, in the present
study, although our full amplitude has only one pole cor-
responding to the N∗(1535), it also contains a large non-
resonant background contribution. The value of the work
in Ref. [10] can be seen from another perspective: once
an empirical parametrization of the πN → φN data is
done, such information can be used in related processes
like the pp → ppφ reaction and, indeed, it is shown in
Ref. [10] that the cross sections of both reactions can be
reproduced simultaneously.

At this point it is illuminating to consider the ω pro-
duction according to πN → ωN (not shown here but
calculated). The cross section is of similar size and has
a similar energy dependence as in πN → φN , while the
data in ω production reaches σ = 1.5 mb already 50
MeV above the ωN threshold. Thus, the present model,
using the full amplitude, is more than a factor of ten
below data. This illustrates that the present model is in-
deed suited for the OZI-violating φ production, where it
matches the data much better; for ω production, in con-
trast, resonances and their OZI-allowed couplings to ωN
will dominate the cross section, and the present model
delivers only a small part of the amplitude.

The solution using the full amplitude, shown with the
solid lines in Figs. 2 and 3, still overestimates the data
by a factor of around 2.5. As described in Sec. II, the full
amplitude of MB → MB has been finetuned to fit πN
scattering data from the πN threshold up to s1/2 ∼ 1.6
GeV. Thus, we cannot expect a precise prediction at the
high energies of φ production. Yet, we can estimate the
expected precision by investigating strangeness produc-
tion within the present model: The φ couples to the me-
son baryon amplitude through its decay channel into K̄K
as described in Sec. II. Strangeness production accord-
ing to πN → KY , where Y = Λ, Σ can be evaluated
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FIG. 4: Reaction π−p → K0Λ. Theoretical curves as de-
scribed in Fig. 2. Complete data reference in Ref. [1].
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FIG. 5: Reaction π−p → K0Σ0. Theoretical curves as de-
scribed in Fig. 2. Complete data reference in Ref. [1].

from the present model by choosing the corresponding fi-
nal state j in the transition amplitude T ij from Eq. (2).
The cross sections for πN → Y K are shown in Figs. 4
to 6.

Again, the solid lines show the result using the full am-
plitude, the dashed-dotted lines show the pole approxi-
mation and the dashed lines represent the result after a
readjustment of the parameters as discussed in Sec. III C.
The pole approximation is quite different from the out-
come with the full amplitude and lies much below data
for all reactions. This becomes worse and worse at en-
ergies further away from the nominal N∗(1535) mass as
one would expect. In particular, the π−p → K0Λ re-
action shows that the opening of the KΣ channel plays
an important role. This structure is contained in the
full amplitude, while in the pole approximation from Eq.
(6), only the information about the sub-threshold KΛ
and KΣ amplitudes is present. These findings imply
also a caveat for effective Lagrangian approaches using
sub-threshold resonances: we have seen that the contri-
bution from the pole can become very small, and thus a
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FIG. 6: Reaction π−p → K+Σ−. Theoretical curves as de-
scribed in Fig. 2. Complete data reference in Ref. [1].

fit to data, using only resonance contributions, can easily
lead to an overestimation of the coupling strength to the
sub-threshold resonance.

In the following, we concentrate on the full amplitude,
shown with the solid lines. For the reactions π−p→ K0Λ
and π−p → K0Σ0 we observe fair agreement in the
cross sections, even in the region of φ production around
s1/2 ∼ 2 GeV. This behavior is comparable to previous
findings for a similar model [18]. In Ref. [12] the bump
at s1/2 = 1.7 GeV in π−p → K0Λ is interpreted as an
interplay between the P13(1720) resonance and the open-
ing of the KΣ and ωN channels, although the bump can
be also well described by a pure P11(1710) contribution
in a reduced channel space. The picture changes again
once photoproduction data are included [12]. The qual-
ity of the differential cross section data is not good and
it is difficult to pin down the contribution from differ-
ent channels and partial waves uniquely. In the present
model, the structure at s1/2 = 1.7 GeV is given entirely
by the opening of the KΣ channel within the coupled
channel dynamics in pure s-wave.

At the right shoulder of the bump there is an overpre-
diction of the data, that reaches up to s1/2 ∼ 2 GeV,
i.e. the region of φ production. Yet, the overall shape
is fairly well reproduced, and it is noteworthy, that the
strength and energy dependence of the cross sections in
π−p → K0Λ and π−p → K0Σ0 are predictions and in-
volve no free parameters except those previously fixed in
πN scattering [see Sec. II].

For the π−p → K0Σ0 reaction shown in Fig. 5, the
present calculation (solid line) leaves room for additional
structures at around s1/2 = 1.75 GeV. There, the ex-
cess of the cross section could indicate a resonant con-
tribution. In Ref. [12], a sizable contribution from the
P11(1710) resonance in JP = 1/2+ is found. In the same
reference, a strong s-wave contribution close to thresh-
old has been found which supports the present s-wave
calculation.

For the reaction π−p → K+Σ− shown in Fig. 6, the
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FIG. 7: Individual contributions of intermediate states to the
π−p → φn cross section. Dashed line: KΛ intermediate state.
Dashed dotted line: KΣ intermediate state. Solid line: Sum
of the contributions.

present study predicts a cross section that is too large
compared to data. Close to threshold the model deviates
by a factor of around two, while at higher energies the
discrepancy is even larger. At s1/2 ∼ 2 GeV, which is the
energy where φ production starts, the model overpredicts
the cross section by a factor of around 3.

We cannot expect a better precision for φ production
than the precision in pion-induced strangeness produc-
tion, and from the π−p → K0Λ and π−p → K+Σ− re-
action we have learned that a factor of 2 to 3 deviation
must be admitted. This is indeed what we found for the
φ production.

It is instructive to see the different weights of terms in
the φ production. The intermediate states with φ cou-
plings [see Fig. 1] in the reaction π−p → φn are K+Σ−,
K0Σ0, and K0Λ. In Fig. 7 we show the contributions
from these intermediate states. The contribution from
the K0Λ state largely dominates. Indeed, setting this
loop to zero, the φ production cross section is reduced by
a factor of around ten, i.e. a factor of three below data.
The reason for the large contribution can be found in the
NKΛ vertex, which is around three times larger than the
NKΣ vertex. Additionally, the KΛ threshold is lower
than the KΣ one and the intermediate loop function is
larger for the KΛ state. The dominance of the K0Λ state
also means that the observed discrepancies in the reac-
tion π−p → K+Σ− [see Fig. 6] will have only moderate
influence in the π−p → φn reaction. The overpredic-
tion for the cross section in π−p → φn is rather tied to
the overprediction of the data in π−p→ K0Λ at around
s1/2 ∼ 2 GeV [see Fig. 4]. Indeed, in Sec. III C we will
see that a better description of the π−p → K0Λ cross
section leads to a better description of the πN → φN
reactions.

Note that the dominance of the K0Λ intermediate
state is quite different to the cancellation pattern between
the KΛ and KΣ intermediate states which we have ob-

served in the determination of the coupling strengths of
the N∗(1535) to φN in Sec. III A. Again, this is due
to the fact that the full, energy dependent MB → MB
amplitude contains much more information than the pole
approximation extrapolated to the high energies of φ pro-
duction. It is then the full amplitude which delivers a
much more realistic description of the data than the pole
approximation.

C. Readjusting the parameters of the amplitude

The only free parameters in the present study are the
four subtraction constants of the loop function from Eq.
(5), which have been fitted to πN scattering data in S11

and S31 from threshold up to s1/2 ∼ 1.6 GeV. Varying the
subtraction constants around their ”natural” value [25] is
a common way to absorb effects of different nature which
are not explicitly included in the strong MB →MB am-
plitude. These can be effects of higher order Lagrangians,
which can also be related to genuine resonance poles [25].
The role of the subtraction constants in unitarized chi-
ral perturbation theory has been recently discussed in
Ref. [25]. Also, there are higher order relativistic effects
which can be absorbed in the values of the subtraction
constants [see a discussion in Ref. [26]]. Many of these
higher order corrections are small or at least slowly vary-
ing with energy so that a constant in energy is sufficient
to absorb them. However, in the present study we are
interested in an energy region 500 MeV above the range
where the subtraction constants have been fixed origi-
nally [20]. Thus, the energy dependence of those effects,
that were absorbed in the subtraction constants, might
require a slight readjustment.

Indeed, as Fig. 4 shows, the π−p→ K0Λ cross section
is too large compared to data at s1/2 = 2 GeV, about
a factor of two. When readjusting the subtraction con-
stants in Eq. (5) we require that the data in π−p→ K0Λ
is matched at s1/2 = 2 GeV. At the same time, we re-
quire that the cross sections stay similar in the other
πN → KY reactions studied. Additionally, we require
that the pole of the N∗(1535) remains, although it might
move slightly. Finally, we require that the set of subtrac-
tion constants is as close as possible to the original values
from Ref. [20].

A readjustment which fulfills all these requirements is
given with aKΣ = −2.8, aKΛ = 2.6, aπN = 3.6, aηN =
0.6 (compared to the respective values of −2.8, 1.6, 2.0,
0.2 in the original fit from Ref. [20]). The resulting cross
sections are plotted in Figs. 2 to 6 with the dashed lines.

In order to show the quality of the new fit we quote
the values of the χ2 for the π−p→ K0Λ reaction for the
energy region from 1875 MeV till 2125 MeV: the χ2 per
degree of freedom is χ/D.o.f. = 38 with the original set
of subtraction constants, while after the readjustment,
χ/D.o.f. = 7.9, which is still a high value. However, as
Fig. 4 shows, the experimental data from Ref. [34] (open
circles) seem to be incompatible with the rest of the data
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TABLE II: Couplings of the N∗(1535), resulting after a read-
justment of the subtraction constants [Sec. IIIC]. The values
in brackets show the size of the original couplings, correspond-
ing to the subtraction constants from Ref. [20]. The first
three couplings correspond to the scattering problem of Ref.
[20]. The last three are obtained within the formalism of the
present paper.

gN∗(1535)

After Readjustment original

K+Σ− 2.09 + 0.17 i ( 2.20 − 0.17 i)

K0Σ0
−1.49 − 0.13 i (−1.56 + 0.12 i)

K0Λ 1.79 + 0.26 i ( 1.39 − 0.08 i)

φn 0.03 − 0.41 i ( 0.04 − 0.17 i)

ωn 0.02 + 0.28 i (−0.03 + 0.16 i)

ρ0n −0.66 − 0.13 i (−0.64 + 0.04 i)

from Ref. [1] in that energy region. Indeed, omitting
the three data points from Ref. [34] in the fitted region,
χ/D.o.f. = 1.1, which is a clear signal of incompatible
data.

The reduction of the cross section in π−p → K0Λ ob-
tained in the new fit leads to a reduced cross section
in the φ production reactions, because the K0Λ inter-
mediate state dominates as discussed at the end of Sec.
III B. With the readjusted subtraction constants, we ob-
tain a fairly good description of the data. We would not
claim to be able to describe the higher energy data in φN
production at 2.6 and 2.9 GeV in Fig. 2 because these
energies are much too high for the present model.

IV. OVERVIEW AND DISCUSSION

Along the paper we have clearly stated the approxima-
tions done and the level of accuracy expected. We found
the N∗φN coupling very small because of strong cancel-
lations between the intermediate KΛ and KΣ channels.
Since the description of the π−p to KΛ andKΣ cross sec-
tions was only qualitative, we can infer some uncertainty
in the N∗ couplings to KΛ and KΣ, although we should
stress that the results of the chiral unitary approach are
much better at energies around the the N∗(1535) where
the model has been fitted to the data of πN scattering.
We can get an idea of these uncertainties by recalculat-
ing the N∗ → KΛ and N∗ → KΣ couplings with the
new set of parameters from Sec. III C, and from this the
new N∗φN coupling. The results can be seen in Table II.
The coupling constants have been extracted through an
expansion of the amplitude around the pole as discussed
following Eq. (6).

We see that the N∗KΛ and N∗KΣ couplings are
rather stable but, due to the cancellations mentioned,
the N∗φN coupling changes more drastically, by about a
factor 2.5 in modulus. With the new N∗φN coupling the

πN → φN cross section of Figs. 2 and 3 in the pole ap-
proximation would be increased by about a factor of five.
Yet, the discrepancies in about two orders of magnitude
with the data remain.

Once again, the results come to reinforce our comments
in Sec. III B that the pole approximation from Eq. (18)
is quite bad and, as a consequence, the concept of the
φN∗ coupling associated to that approximation is not
very useful.

We would like to come back to the issue of the meaning
of the N∗(1535) as a dynamically generated resonance.
The approach of Ref. [20] relies upon the use of the low-
est order chiral Lagrangians to construct the kernel of the
interaction and subtraction constants which are fitted to
the πN data. Unlike the case of the Λ(1405), where all
the channels require the same subtraction constant [35],
or equivalently, a unique cut off in all channels to regu-
larize the loop functions [36], the case of the N∗(1535)
requires different ones in different channels, yet of natural
size. This was interpreted in Ref. [25] as an indication
of the presence of extra non meson baryon components,
presumably 3q states. The flexibility on the choice of sub-
traction constants, which regularize the loop functions,
allows one to take into account phenomenologically such
extra components in the scattering problem.

However, this is no longer the case in the radiative de-
cay N∗ → Nγ where the loops with photon couplings are
proved finite [26] and there is no freedom to fit anything.
Deficiencies in the theoretical framework will be reflected
there in the inability to describe these helicity ampli-
tudes. In this sense it is worth noting that these ampli-
tudes are fairly well described by the couplings provided
by the chiral unitary approach [26]. Some discrepan-
cies arise in the form factors around Q2 = 1 GeV2 where
the theoretical form factor falls too fast and a compact
three quark component like in the chiral quark models
would definitely help in producing a slower fall down
[37, 38]. The acceptable results for the helicity ampli-
tudes at Q2 = 0, compared with the most recent de-
termination of the MAID2007 analysis [39], indicate that
the baryon meson components are still the dominant ones
in the N∗(1535) wave function and the relatively stable
couplings of the N∗ to the meson baryon components
provided by the chiral unitary approach [20] are realis-
tic. Let us also mention that the discrepancies with the
data in the Q2 dependence around Q2 = 1 GeV2 are of
the order of 20 % for amplitudes normalized equally at
Q2 = 0, an amount still lower than the uncertainties ac-
cepted here in the determination of the πN → φN cross
section.

Finally we would like to comment about another ap-
proach to the π−p → φn reaction, followed in Refs.
[40, 41, 42] in which the leading process is t channel ρ
exchange relying upon the φ→ ρπ anomalous decay and
form factors which are fitted to the experiment. A good
description is obtained with this approach but in the ab-
sence of form factors the use of the ρ exchange amplitude
overshoots the cross section by about a factor of ten. The
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results of the present paper, where with no fits one al-
ready obtains the π−p→ φn cross section at the qualita-
tive level, forces one to reopen this issue. A possibility is
to have an OZI violating contact term for the π−p→ φn
reaction. We can also think of additional terms with the
same topology as the t channel ρ exchange. Particularly,
a term where one has the πφb1(1235) vertex and the b1 is
exchanged and coupled to the nucleon. In recent theories
where the axial vector meson are dynamically generated
from the interaction of vector mesons and pseudoscalars
[43, 44, 45] one finds the b1 from the interaction of cou-
pled channels namely KK̄∗, K∗K̄, φπ. The coupling of
the b1 to φπ is found sizeable in [44]. Unfortunately, al-
though some studies are devoted to the coupling of the
a1 to the nucleon [46], little is known about the coupling
of b1 to the nucleons, which does not allow us to proceed
further in an evaluation of the actual contribution of this
new term. However, the argument clearly indicates that
the issue of the contribution of t channel exchange is not
settled with just the ρ exchange. The findings of the
present paper could stimulate work in this direction.

V. CONCLUSIONS

The study done here has allowed us to draw interesting
conclusions. The simultaneous study of the π−p → φn
and the π−p → K0Λ, π−p → K0Σ0 and π−p → K+Σ−

reactions allowed us to get an idea of the level of accuracy
of the model used, from the comparison of the theoretical
results with the data for the π−p→ K0Λ, π−p→ K0Σ0

and π−p→ K+Σ− reactions. In the worse of the cases we
found discrepancies of about a factor 2.5. We should not
expect hence a better agreement with data than such a
factor for the π−p→ φn reaction which occurs at higher
energies from theN∗(1535). The first finding of the study
was that the N∗(1535) has indeed a non negligible cou-
pling to the φN state. The second finding was that using
the simple pole approximation for the πN → φN reac-
tion with the N∗φN coupling found, we obtain a too low
cross section compared with experiment.

We discussed that the simple pole approximation is
very bad and one should rather use the full amplitude
for the πN → φN reaction obtained by means of the
full πN → KΛ, KΣ amplitudes. The use of these full
amplitudes instead of their simple pole approximation
gives rise to a π−p → φn cross section even larger than

experiment but not much different than the difference
seen in the π−p→ K0Λ reaction within the same model.
The consequences one draws from these results is that,
when we study a region so far away from the pole, the
whole amplitudes π−p → K+Σ−, π−p → K0Σ0 and
π−p → K0Λ should be used rather than their pole ap-
proximation.

We also observed that the π−N → φN reaction was
dominated by the intermediate K0Λ state. Then, using
some freedom in the model forMB →MB which allowed
us to change the subtraction constants moderately, we
could obtain a better cross section for the π−N → K0Λ
reaction around the energy of threshold φN production.
By using this new input in the MB → MB model then
we obtained good cross sections for the π−N → φN re-
action, within present experimental errors which are as
large as a factor of two.

Should the experimental data improve in the future,
further refinements would be needed in the work done
here. Indeed, in Ref. [26] it was shown that for large Q2

values of the order of 1 GeV2, as needed here, relativis-
tic corrections could induce changes of the order of 30-40
%. Furthermore, we should take into account that the
coupling of φN to πN , apart from the source studied by
us, could also get contribution from a direct coupling
if a more sophisticated approach to the πN reactions
would be followed which would include vector baryon
components in addition to the pseudoscalar baryon ones
of [17, 18, 19, 20, 21]. This enterprise would be possible
by extending to SU(6) the work based on SU(3) of the
former references. The formalism for this extension has
been carried out in [47] although not applied to the prob-
lem we are dealing with here. Our study could stimulate
further work along this direction.
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