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The carrier mobility � of few-layer graphene (FLG) field-effect transistors increases tenfold when the

SiO2 substrate is replaced by single-crystal epitaxial PbðZr0:2Ti0:8ÞO3 (PZT). In the electron-only regime

of the FLG, � reaches 7� 104 cm2=V s at 300 K for n ¼ 2:4� 1012=cm2, 70% of the intrinsic limit set

by longitudinal acoustic (LA) phonons; it increases to 1:4� 105 cm2=Vs at low temperature. The

temperature-dependent resistivity �ðTÞ reveals a clear signature of LA phonon scattering, yielding a

deformation potential D ¼ 7:8� 0:5 eV.

DOI: 10.1103/PhysRevLett.102.136808 PACS numbers: 73.50.�h, 72.10.�d, 77.84.Dy

Recent calculations show that the intrinsic mobility of
graphene, set by longitudinal acoustic (LA) phonon scat-
tering, can reach �105 cm2=V s at room temperature [1].
However, extrinsic scattering sources, many of which arise
from the surface morphology, chemistry, structural, and
electronic properties of the widely used SiO2 substrate,
limit the mobility to the current range of 2� 103 � 2�
104 cm2=Vs [1–11]. Increasing the mobility beyond the
extrinsic limits is one of the central challenges of the
graphene community. Recently, two groups have reported
a significant improvement in the mobility of suspended
graphene after current-heating annealing [12,13]. A more
device friendly solution involves placing graphene on a
different substrate. Several alternatives have been explored
although they result in graphene mobilities comparable to
that on SiO2 [14].

In this Letter, we report significant carrier mobility
improvement in few-layer graphene (FLG) field-effect
transistors (FETs) fabricated with single-crystal epitaxial
PbðZr0:2Ti0:8ÞO3 (PZT) films as the gate oxide. At 300 K,
PZT-gated FLG exhibits a mobility �� 7� 104 cm2=Vs
at a density of n ¼ 2:4� 1012=cm2, reaching 70% of the
intrinsic limit set by LA phonons. We observe a clear
signature of LA phonon scattering in the temperature
dependence of resistivity �ðTÞ. The PZT-gated FLG shows
a residual resistivity �0 at low temperature approximately
an order of magnitude lower than that of SiO2-gated single
and few-layer graphene. This low �0 corresponds to � ¼
1:4� 105 cm2=Vs and a long carrier mean free path of
2 �m at n ¼ 2:4� 1012=cm2. Our results open up a prom-
ising route into realizing graphene’s full scientific and
technological potential [3,15].

FLG flakes are mechanically exfoliated from Kish
graphite onto 400 nm, crystalline PZT films epitaxially
grown on Nb-doped single-crystal SrTiO3 (STO) sub-
strates via radio-frequency magnetron sputtering [16].
Details are given in Ref. [17]. Figure 1(a) shows the optical
and atomic force microscopy (AFM) images of a FLG on
PZT. FETs are made by conventional lithography in the

Hall-bar geometry. The Nb-doped STO substrate serves as
the backgate to which a bias voltage Vg is applied to tune

the carrier density of the FLG [Figs. 1(b) and 1(c)]. Results
reported here are collected from 3 FETs fabricated on the
same PZT substrate and one FET on a SiO2 substrate.
Resistivity and Hall measurements were performed in a

4He cryostat with a base temperature of 1.4 K, equipped
with a superconducting magnet. Standard low-frequency
(47 Hz) lock-in techniques are used with excitation cur-
rents ranging from 50 to 200 nA. In Fig. 2, we show the
sheet resistivity � of a 2.4 nm FLG [Fig. 1(c)] as a function
of Vg at temperatures 4 K <T < 300 K. �ðVgÞ displays a
broad maximum at the charge neutrality point (CNP).
Curves below 300 K are shifted to align the �ðVgÞ maxi-

mum at Vg ¼ 0 V [18]. FLG of this thickness behaves as a

FIG. 1. AFM contact mode image of a 2.4 nm FLG flake
(center) on a 400 nm PZT film. Inset: optical image of the whole
flake with the area in (a) circled. The PZT surface shows smooth
terraces separated by a-axis lines, with a root-mean-square (rms)
surface roughness of 3–4 Å over a 1 �m2 area. FLG has a
roughness of 2–3 Å. (b) Device schematics. (c) Hall bar con-
figuration of a FLG-FET with current (I1, I2) and voltage
electrodes for resistance (V1 and V2) and Hall (V1 and VH)
measurements. We determine the thickness of this FLG to be
ð2:4� 0:3Þ nm based on its optical transparency.
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two-dimensional (2D) semimetal, where the low-energy
bands for electrons and holes are parabolic and overlap
slightly [19] [inset of Fig. 2(a)]. The carrier density in the
FLG is controlled by Vg through ne-nh ¼ �Vg, where � is

the charge injection rate of the backgate. In the band-
overlap regime [regime I in Fig. 2(a) inset], both electrons
and holes contribute to conduction:

1

�
¼ eðne�e þ nh�hÞ: (1)

At sufficiently large j Vg j , the system becomes a pure 2D

electron [regime II in Fig. 2(a) inset] or hole (not shown)
gas [19]. There, the resistivity and the Hall coefficient RH

are given by

1

�
¼ ene;h�e;h; RH ¼ 1

ene;h
; ne;h ¼ �Vg: (2)

We measure RH in the hole-only regime of two devices and
determine � ¼ 1:35� 1012 cm�2=V. Using a parallel-
plate capacitor model, we extract a dielectric constant � �
100 for our PZT films. This value is confirmed by inde-
pendent low-frequency capacitance measurements [17].
The high � enables PZT to efficiently inject carriers into
graphene and screen the effect of charged impurities.

It is clear from Eqs. (1) and (2) that �(Vg) changes slope

at a threshold VT
g , where the sample transitions from a two-

carrier to a single-carrier regime. Indeed, a kink at VT
g ¼

1:1 V is clearly visible in �ðVgÞ at low temperature

[Fig. 2(b)], where ne ¼ 1:5� 1012=cm2 and nh ¼ 0.
Modeling the FLG in regime I with one electron and one
hole band and using the effective mass values determined
in Ref. [19] for this thickness (m�

e ¼ 0:06m0 and

m�
h ¼ 0:10m0), we estimate the electron and hole densities

at the CNP to be n0e ¼ n0h � 9� 1011=cm2. This corre-

sponds to an overlap between the electron and hole bands
of �30 meV (see Ref. [17] for more discussions). These
estimates are in good agreement with results obtained
using methods described previously [19] and band struc-
ture calculations of FLG of this thickness [20]. These
studies also suggest that FLG in this thickness range may
have more than one hole band [19,20]. We emphasize that
the central results of the present study are obtained in the
electron-only regime described by Eq. (2), and do not rely
on the accurate knowledge of the band structure in the two-
carrier or hole-only regimes.
In single and few-layer graphene prepared on SiO2 sub-

strates, the mobility is found to be roughly n-independent
[6,7,19]. �ðVgÞ calculated using Eq. (1) and a constant� is

plotted in Fig. 2(c) (dashed curve). This curve clearly does
not describe our data (open symbols) in the band-overlap

regime (I). Instead, a density-dependent mobility �e;h �
n�e;h produces an excellent fit to the data within the entire

regime. The power-law functional form is motivated by
measurements in regime II, shown later. The solid line in
Fig. 2(c) shows such fitting with mobilities determined by

�eðneÞ ¼ cn�e ; �hðnhÞ ¼ crn�h (3)

where we require �e and �h to have a power-law depen-
dence on ne and nh, respectively, with the same exponent�
but scale by a factor r. We obtain � ¼ 0:9 from the fit in
Fig. 2(c) (see Ref. [17] for other fitting scenarios). The
constant c is determined by matching a measured data
point �e ¼ 1:0� 105 cm2=V s at the electron density of
n ¼ 1:75� 1012=cm2 in regime II. The approximate sym-
metric Vg-dependence �ðVgÞ displayed for both carriers in

regime I, together with �� 1, implies that r ¼ �hðnhÞ
�eðneÞ �

m�
e=m

�
h � 0:6. In Ref. [17], we show that the above fitting

parameters r ¼ �hðnhÞ
�eðneÞ ¼ 0:6 and � ¼ 0:9 also describe the

slope and offset of the RHðVgÞ data in the vicinity of the

CNP very well. Large e-h asymmetry in � has been
observed in graphene samples [11,12]. Its origin is unclear
at the moment.
The above analysis provides an approximate scenario of

transport in the two-carrier regime of the FLG. Below, we
present and analyze the central results of our work, derived
from data taken in regime (II) of the FLG (VT

g > 1:1 V),

where the FLG behaves as a one- band, purely 2D electron
gas described by Eq. (2). Figure 3 plots �ðTÞ extracted
from data shown in Fig. 2(a) at five electron densities
ranging from 1:9� 1012=cm2 (at Vg ¼ 1:4 V) to 2:4�
1012=cm2 (at Vg ¼ 1:8 V), well into regime II. At a fixed

n, �ðTÞ follows a linear T-dependence between 100 and
300 K and quickly saturates to a nonzero residual value
�0ðnÞ at lower T. This linear T-dependence, its tempera-
ture range, and the magnitude of the resistivity change
strongly point to scattering between electrons and LA
phonons in graphene. Indeed, in a 2.4 nm FLG, both

FIG. 2 (color online). (a) �ðVgÞ at selected temperatures taken
on the device shown in Fig. 1(c). Inset: schematics of the band
structure of FLG of this thickness. (b) �ðVgÞ at 4 K. The kink at

VT
g ¼ 1:1 V (dash-dotted line) marks the boundary between

regimes I and II. (c) �ðVgÞ at 10 K (open symbols) with a fitting

curve (solid line) combining Eqs. (1) and (3) with � ¼ 0:9 and
r ¼ 0:6. The dashed line is calculated from Eq. (1) assuming a
density-independent mobility �e ¼ �h ¼ 1� 105 cm2=Vs.
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electrons and phonons are two-dimensional. The resistance
due to LA phonon scattering has been calculated [1] and
experimentally studied [10] recently in graphene on SiO2.
However, the combination of a large �0 and the onset of
another scattering mechanism at 150 K in SiO2-gated
graphene makes it difficult to extract the LA phonon con-
tribution unambiguously in those systems [10].

In our devices, a small �0 enables us to clearly observe
the predicted linear T-dependence at T > TBG, where

TBG ¼ 2@kFvph

kB
� 80 K is the Bloch-Gruneisen temperature

at n ¼ 2� 1012=cm2, using a sound velocity vph ¼ 2:1�
106 cm=s for LA phonons in graphene and kF ¼ ffiffiffiffiffiffiffi

�n
p

for
the Fermi wave vector of the 2D electron gas. At T > TBG,
the contribution to the resistivity from LA phonons is given
by

�phðT; nÞ ¼ m�
e

ne2

�

1

�

�

¼ 1

n

ðm�
eÞ2D2kBT

4@3e2�mv
2
ph

(4)

where we have modified the derivation in Ref. [1] to
account for massive electrons in FLG. D is the unscreened
acoustic deformation potential [17] and �m ¼ 6:5�
10�7 kg=m2 is the areal mass density of graphene. The
correction due to a nondegenerate Fermi gas is less than a
few percent in our density and temperature range and is
neglected in Eq. (4). Solid lines in Fig. 3 show fittings at
different densities for T > 100 K, where the slopes range
from 83 to 87 m�=K and lead to D ¼ 7:8� 0:5 eV in
graphene. This result falls within the range of reported
values in the literature of 1–30 eV [10,21–24] and agrees
very well with tight-binding calculations producing D�
3�, where �� 3 eV is the nearest-neighbor hopping ma-

trix [22]. We do not observe evidence of superlinear
T-dependences reported in graphene on SiO2 [7,10] that
are attributed to remote substrate [9,10] or inter-ripple
flexural phonons [7]. We speculate that a higher stiffness
and a larger average carrier-substrate separation in FLG
may be responsible for suppressing scatterings from these
two types of phonons.
The small residual resistivity �0 in PZT-gated FLG leads

to mobility �0 in excess of 1� 105 cm2=Vs at low T.
Since both FLG and single-layer graphene are subject to
similar scattering mechanisms, a comparison between� of
PZT-gated FLG, SiO2-gated FLG, and SiO2-gated gra-
phene highlights the important role played by the substrate.
Such comparison is shown in Fig. 4, where we compare
�ðTÞ obtained from two 2.4 nm thick FLG (one on PZT,
one on SiO2 [17]), graphene on SiO2 from Ref. [10], bulk
graphite from Ref. [21] and the intrinsic LA phonon-
limited mobility calculated from Eq. (4), using D¼8 eV.
At a density of n ¼ 2:4� 1012=cm2, the PZT-gated device
shows �� 7� 104 cm2=V s at room temperature, 70% of
the intrinsic phonon mobility of �1� 105 cm2=Vs. At
low T, � increases to 1:4� 105 cm2=Vs, corresponding
to a long mean free path of 2 �m. A second device
(�5 nm thick, not shown) on the same PZT substrate
exhibits mobilities of 7:5� 104 cm2=V s at room tempera-
ture and 1:5� 105 cm2=Vs at low temperature. These
values represent an approximately tenfold increase over
those of our SiO2-gated FLG as well as single and few-
layer graphene reported in the literature, where � ranges
2� 103–2� 104 cm2=Vs with weak or no temperature
dependence [6,7,10,19]. This remarkable mobility im-
provement clearly demonstrates the advantage of the
PZT substrate over SiO2 towards fabricating graphene-
based high-quality 2D systems. We note that Ref. [25]
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FIG. 4 (color online). Comparison of �ðTÞ in various graphitic
materials. Solid squares: PZT-gated FLG shown in Fig. 3 at n ¼
2:4� 1012=cm2. Open triangles: a SiO2-gated FLG of the same
thickness and density [17]. Open circles: single-layer graphene
on SiO2 reported in Ref. [10]. Crosses: mobility of bulk graphite
from Ref. [21]. Solid line: LA phonon-limited mobility calcu-
lated from Eq. (4).
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FIG. 3 (color online). �ðTÞ at electron densities of (from top to
bottom) n ¼ 1:89, 2.02, 2.16, 2.30, and 2:43� 1012=cm2. The
solid lines are fittings to Eq. (4) for T > 100 K, with the
corrections due to a nondegenerate Fermi gas included. Inset:
Low-T residual mobility �0ðnÞ in a double-log plot. Open
squares are data taken in regime II. The dashed line plots the
fitting [Eq. (3), electrons] obtained in regime I.
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reports mobilities up to 6� 104 cm2=V s at 4 K in thick
multilayer graphene prepared on SiO2, possibly due to
their increasing 3D characteristics and reduced interactions
with external scattering sources. Such samples exhibit�<
1:5� 104 cm2=Vs at 300 K [25] compared to �� 7�
104 cm2=Vs observed here.

The low-temperature residual mobility �0ðnÞ in PZT-
gated FLG exhibits a density dependence best described by
�0ðnÞ � n1:3 for 1:9� 1012=cm2 < n< 2:4� 1012=cm2.
In the inset of Fig. 3, we show �0ðnÞ data in this range
together with the fitting obtained in regime I:�0ðnÞ � n0:9.
This n-dependence of � is in contrast to the SiO2-gated
graphene, where the scattering due to Coulomb impurities
leads to a very weak n-dependence in a comparable density
range, suggesting that different scattering mechanisms
may be at work [2–7,19,26,27].

It has been shown in suspended graphene that a signifi-
cant improvement in � is only achieved after current
annealing, which highlights the important role played by
interfacial adsorbates [12], among other possible sources
of scattering [7–10,28]. Our PZT substrates possess a large
spontaneous polarization P pointing into the surface [17].
The absence of free carriers in ungated FLG devices in-
dicates that this polarization is almost completely screened
by a high-density layer of surface adsorbates prior to
exfoliation. Screening adsorbates may come from free
ions, atoms, and molecules in the ambient and OH� and
Hþ produced by the dissociation of H2O on PZT surface
[29,30]. Despite their high density, our data suggest that the
scattering from interfacial adsorbates is much weaker than
in SiO2-gated devices. We attribute this remarkable phe-
nomenon to the strong screening of PZT and speculate that
some degree of ordering in the adsorbate layer may also
play a role in reducing the scattering.

In conclusion, we have demonstrated a significant per-
formance improvement in few-layer graphene FETs by
using the crystalline ferroelectric gate oxide PZT. This
approach has led us to the observation of the highest
reported mobility to date in unsuspended single- and
few-layer graphene devices. This result opens up a new
route for realizing high-speed electronic devices and ex-
ploring novel 2D physics in graphene.
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