15 research outputs found

    The Impact of Amino Acid Variability on Alloreactivity Defines a Functional Distance Predictive of Permissive HLA-DPB1 Mismatches in Hematopoietic Stem Cell Transplantation

    Get PDF
    AbstractA major challenge in unrelated hematopoietic stem cell transplantation (HSCT) is the prediction of permissive HLA mismatches, ie, those associated with lower clinical risks compared to their nonpermissive counterparts. For HLA-DPB1, a clinically prognostic model has been shown to be matching for T cell epitope (TCE) groups assigned by cross reactivity of T cells alloreactive to HLA-DPB1∗09:01; however, the molecular basis of this observation is not fully understood. Here, we have mutated amino acids (aa) in 10 positions of HLA-DPB1∗09:01 to other naturally occurring variants, expressed them by lentiviral vectors in B cell lines, and quantitatively measured allorecognition by 17 CD4+ T cell effectors from 6 unrelated individuals. A significant impact on the median alloresponse was observed for peptide contact positions 9, 11, 35, 55, 69, 76, and 84, but not for positions 8, 56, and 57 pointing away from the groove. A score for the “functional distance” (FD) from HLA-DPB1∗09:01 was defined as the sum of the median impact of polymorphic aa in a given HLA-DPB1 allele on T cell alloreactivity. Established TCE group assignment of 23 alleles correlated with FD scores of ≤0.5, 0.6 to 1.9 and ≥2 for TCE groups 1, 2, and 3, respectively. Based on this, prediction of TCE group assignment will be possible for any given HLA-DPB1 allele, including currently 367 alleles encoding distinct proteins for which T cell cross reactivity patterns are unknown. Experimental confirmation of the in silico TCE group classification was successfully performed for 7 of 7 of these alleles. Our findings have practical implications for the applicability of TCE group matching in unrelated HSCT and provide new insights into the molecular mechanisms underlying this model. The innovative concept of FD opens new potential avenues for risk prediction in unrelated HSCT

    Frequency and Targeted Detection of HLA-DPB1 T Cell Epitope Disparities Relevant in Unrelated Hematopoietic Stem Cell Transplantation

    Get PDF
    The majority of unrelated donor (UD) hematopoietic stem cell (HSC) transplants are performed across HLA-DP mismatches, which, if involving disparity in a host-versus-graft (HVG) direction for an alloreactive T cell epitope (TCE), have been shown by our group to be associated with poor clinical outcome in 2 cohorts of patients transplanted for hematopoietic malignancies and beta-thalassemia, respectively. Using site-directed mutagenesis of DPB1*0901, we show here that the TCE is abrogated by die presence of amino acids LFQG in positions 8-11 of the DP beta-chain. Based on this and on alloreactive T cell responsiveness, we have determined the presence or absence of the TCE for 72 DPB1 alleles reported in the ethnic groups representative of the worldwide UD registries, and predict that 67%-87% (mean 77%) of UD recipient pairs will not present a DPB1 TCE disparity in the HVG direction. We developed and validated in 112 healthy Italian blood donors an innovative approach of DPB1 epitope-specific typing (EST), based on 2 PCR reactions. Our data show that DPB1 TCE disparities may hamper the clinical success of a considerable number of transplants when DPB1 matching is not included into the donor selection criteria, and that a donor without DPB1 TCE disparities in the HVG direction can be found for the majority of patients. Moreover, the study describes the first protocol of targeted epitope-specific DPB I donor-recipient matching for unrelated HSC transplantation. This protocol will facilitate large-scale retrospective clinical studies warranted to more precisely determine the clinical relevance of DPB1 TCE disparities in different transplant conditions. (c) 2007 American Society for Blood and Marrow Transplantation The majority of unrelated donor (UD) hematopoietic stem cell (HSC) transplants are performed across HLA-DP mismatches, which, if involving disparity in a host-versus-graft (HVG) direction for an alloreactive T cell epitope (TCE), have been shown by our group to be associated with poor clinical outcome in 2 cohorts of patients transplanted for hematopoietic malignancies and beta-thalassemia, respectively. Using site-directed mutagenesis of DPB1*0901, we show here that the TCE is abrogated by die presence of amino acids LFQG in positions 8-11 of the DP beta-chain. Based on this and on alloreactive T cell responsiveness, we have determined the presence or absence of the TCE for 72 DPB1 alleles reported in the ethnic groups representative of the worldwide UD registries, and predict that 67%-87% (mean 77%) of UD recipient pairs will not present a DPB1 TCE disparity in the HVG direction. We developed and validated in 112 healthy Italian blood donors an innovative approach of DPB1 epitope-specific typing (EST), based on 2 PCR reactions. Our data show that DPB1 TCE disparities may hamper the clinical success of a considerable number of transplants when DPB1 matching is not included into the donor selection criteria, and that a donor without DPB1 TCE disparities in the HVG direction can be found for the majority of patients. Moreover, the study describes the first protocol of targeted epitope-specific DPB I donor-recipient matching for unrelated HSC transplantation. This protocol will facilitate large-scale retrospective clinical studies warranted to more precisely determine the clinical relevance of DPB1 TCE disparities in different transplant conditions. (c) 2007 American Society for Blood and Marrow Transplantation Inflammation and immune reaction, or pre-existing immunity towards commonly used viral vectors for gene therapy severely impair long-term gene expression in the central nervous system (CNS), impeding the possibility to repeat the therapeutic intervention. Here, we show that injection of a helper-dependent adenoviral (HD-Ad) vector by lumbar puncture into the cerebrospinal fluid (CSF) of non-human primates allows long-term (three months) infection of neuroepithelial cells, also in monkeys bearing a pre-existing anti-adenoviral immunity. Intrathecal injection of the HD-Ad vector was not associated with any sign of systemic or local toxicity, nor by signs of a CNS-specific immune reaction towards the HD-Ad vector. Injection of HD-Ad vectors into the CSF circulation may thus represent a valuable approach for CNS gene therapy allowing for long-term expression and re-administration

    Therapeutic and diagnostic applications of minor histocompatibility antigen HA-1 and HA-2 disparities in allogeneic hematopoietic stem cell transplantation: a survey of different populations.

    Get PDF
    Minor histocompatibility antigens (mHags) HA-1 and HA-2 are encoded by biallelic loci, with immunogenic variants, HA-1(H) and HA-2(V), which induce strong HLA-A2-restricted alloreactive T-cell responses, and nonimmunogenic counterparts, HA-1(R) and HA-2(M), which represent functional null alleles that are poorly presented by HLA class I molecules. HA-1 and HA-2 are potential targets of selective graft-versus-leukemia,e and graft-versus-tumor reactivity after allogeneic hematopoietic stem cell transplantation (HSCT); however, these applications are restricted to a limited number of patients. Here, we show that a far more frequent application of HA-1 and HA-2 disparity relies on their use as markers for the state of host chimerism after allogeneic HSCT. We have determined allelic frequencies of 29.3% and 70.7% for HA-1(H) and HA-1(R), respectively, and of 83.7% and 16.3% for HA-2(V) and HA-2(M), respectively, in > 200 healthy individuals from northern Italy. Similar frequencies were observed in nearly 100 patients affected by hematologic malignancies or solid tumors, thus showing that HA-1 and HA-2 variabilitv are not associated with the presence of cancer. On the basis of these data, we predict that HA-1 and HA-2 can be used in 32.8% and 23.5% of Italian transplant patients, respectively, as markers for the state of host chimerism, whereas exploitation of disparity for these mHags for targeted immunotherapy will be possible in 10.7% and 1.1% of Italian patients, respectively. Retrospective HA-2 typing of bone marrow., aspirates obtained from a patient during complete remission or recurrence of acute myeloid leukemia after haploidentical HSCT showed the feasibility of using HA-2 as a surrogate marker for disease monitoring. Because of an apparent north-south gradient for HA-1 allelic frequencies, with higher frequencies for the HA-1(H) variant reported in white populations from Southern Europe as compared with Northern Europe and North America, the diagnostic applicability of HA-1 disparity will be slightly more frequent in transplant patients from the north. Taken together, our data show that determination of HA-1 and HA-2 variability can be an important parameter for the selection of allogeneic stem cell donors, in particular for patients affected by hematologic malignancies without a tumor-specific molecular marker. (c) 2006 American Society for Blood and Marrow Transplantation
    corecore