672 research outputs found

    Climatic impact of the A.D. 1783 Asama (Japan) Eruption was minimal: Evidence from the GISP2 Ice Core

    Get PDF
    Assessing the climatic impact of the A.D. 1783 eruption of Mt. Asama, Japan, is complicated by the concurrent eruption of Laki, Iceland. Estimates of the stratospheric loading of H2SO4 for the A.D. 1108 eruption of Asama derived from the SO42− time series in the GISP2 Greenland ice core indicate a loading of about 10.4 Tg H2SO4 with a resulting stratospheric optical depth of 0.087. Assuming sulfur emissions from the 1783 eruption were only one‐third of the 1108 event yields a H2SO4 loading value of 3.5 Tg and a stratospheric optical depth of only 0.029. These results suggest minimal climatic effects in the Northern Hemisphere from the 1783 Asama eruption, thus any volcanically‐induced cooling in the mid‐1780s is probably due to the Laki eruption

    Changes in Continental and Sea-salt Atmospheric Loadings in Central Greenland during the Most Recent Deglaciation: Model-based Estimates

    Get PDF
    By fitting a very simple atmospheric impurity model to high-resolution data on ice accumulation and contaminant f1uxes in the GISP2 ice core, we have estimated changes in the atmospheric concentrations of soluble major ions, insoluble particulates and 10Be during the transition from glacial to Holocene conditions. For many species, changes in concentration in the ice typically overestimate atmospheric changes, and changes in flux to the ice typically underestimate atmospheric changes, because times of increased atmospheric contaminant loading are also times of reduced snowfall. The model interpolates between the flux and concentration records by explicitly allowing [or wet- and dry- deposition processes. Compared to the warm Preboreal that followed, we estimate that the atmosphere over Greenland sampled b y snow accumulated during the Younger Dryas cold event contained on average four-seven times the insoluble particulates and n early seven times the soluble calcium derived from continental sources, and about three times the sea salt but only slightly more cosmogenic 10Be

    Climatic Impact of the A.D. 1783 Asama (Japan) Eruption was Minimal: Evidence from the GISP2 Ice Core

    Get PDF
    Assessing the climatic impact of the A.D. 1783 eruption of Mt. Asama, Japan, is complicated by the concurrent eruption of Laki, Iceland. Estimates of the stratospheric loading of H2SO4 for the A.D. 1108 eruption of Asama derived from the SO42− time series in the GISP2 Greenland ice core indicate a loading of about 10.4 Tg H2SO4 with a resulting stratospheric optical depth of 0.087. Assuming sulfur emissions from the 1783 eruption were only one‐third of the 1108 event yields a H2SO4 loading value of 3.5 Tg and a stratospheric optical depth of only 0.029. These results suggest minimal climatic effects in the Northern Hemisphere from the 1783 Asama eruption, thus any volcanically‐induced cooling in the mid‐1780s is probably due to the Laki eruption

    Exponential Replication of Patterns in the Signal Tile Assembly Model

    Get PDF
    Chemical self-replicators are of considerable interest in the field of nanomanufacturing and as a model for evolution. We introduce the problem of self-replication of rectangular two-dimensional patterns in the practically motivated Signal Tile Assembly Model (STAM) [9]. The STAM is based on the Tile Assembly Model (TAM) which is a mathematical model of self-assembly in which DNA tile monomers may attach to other DNA tile monomers in a programmable way. More abstractly, four-sided tiles are assigned glue types to each edge, and self-assembly occurs when singleton tiles bind to a growing assembly, if the glue types match and the glue binding strength exceeds some threshold. The signal tile extension of the TAM allows signals to be propagated across assemblies to activate glues or break apart assemblies. Here, we construct a pattern replicator that replicates a two-dimensional input pattern over some fixed alphabet of size φ with O(φ) tile types, O(φ) unique glues, and a signal complexity of O(1). Furthermore, we show that this replication system displays exponential growth in n, the number of replicates of the initial patterned assembly

    The International Intellectual Property Commercialization Council’s 3rd Annual U.S. Conference: The State of Innovation in the Union

    Get PDF
    The International Intellectual Property Commercialization Council (“IIPCC”) presented its third annual policy conference at the United States Capitol on May 6, 2019. The conference’s theme explored the question of “what is the state of innovation in the United States?” Panelists included The Honorable Andrei Iancu – Under Secretary of Commerce for Intellectual Property and Director of the United States Patent and Trademark Office; Dr. Carl J. Schramm – University Professor, Syracuse University and Former President of the Ewing Marion Kauffman Foundation; Mr. Patrick Kilbride – Senior Vice President of the Global Innovation Policy Center (“GIPC”) at the U.S. Chamber of Commerce; and Mr. Colman Ragan – Vice President and General Counsel, North America IP Litigation at Teva Pharmaceuticals, who all shared their perspectives on the state of innovation. A lead off panel including local entrepreneurs, intellectual property specialists, federal government specialists, and academics allowed this panel to provide a “boots on the ground” perspective

    The Atlantic Ocean at the last glacial maximum: 1. Objective mapping of the GLAMAP sea-surface conditions

    Get PDF
    Recent efforts of the German paleoceanographic community have resulted in a unique data set of reconstructed sea-surface temperature for the Atlantic Ocean during the Last Glacial Maximum, plus estimates for the extents of glacial sea ice. Unlike prior attempts, the contributing research groups based their data on a common definition of the Last Glacial Maximum chronozone and used the same modern reference data for calibrating the different transfer techniques. Furthermore, the number of processed sediment cores was vastly increased. Thus the new data is a significant advance not only with respect to quality, but also to quantity. We integrate these new data and provide monthly data sets of global sea-surface temperature and ice cover, objectively interpolated onto a regular 1°x1° grid, suitable for forcing or validating numerical ocean and atmosphere models. This set is compared to an existing subjective interpolation of the same base data, in part by employing an ocean circulation model. For the latter purpose, we reconstruct sea surface salinity from the new temperature data and the available oxygen isotope measurements

    Autophosphorylation-based calcium (Ca2+) sensitivity priming and Ca2+/Calmodulin inhibition of Arabidopsis thaliana Ca2+-dependent protein kinase 28 (CPK28)

    Get PDF
    Plant calcium (Ca2+) dependent protein kinases (CPKs) are composed of a dual specificity (Ser/Thr and Tyr) kinase domain tethered to a Calmodulin-like domain (CLD) via an autoinhibitory junction (J) and represent the primary Ca2+-dependent protein kinase activities in plant systems. While regulation of CPKs by Ca2+ has been extensively studied, the contribution of autophosphorylation in the control of CPK activity is less well understood. Furthermore, whether Calmodulin (CaM) contributes to CPK regulation, as is the case for Ca2+/CaM-dependent protein kinases (CaMKs) outside the plant lineage, remains an open question. We screened a subset of plant CPKs for CaM-binding and found that CPK28 is a high-affinity Ca2+/CaM-binding protein. Using synthetic peptides and native gel electrophoresis, we coarsely mapped the CaM-binding domain to a site within the CPK28 J domain that overlaps with the known site of intramolecular interaction between the J domain and CLD. Peptide kinase activity of fully dephosphorylated CPK28 was Ca2+-responsive and inhibited by Ca2+/CaM. Using in situ autophosphorylated protein, we expand on the known set of CPK28 autophosphorylation sites, and demonstrate that, unexpectedly, autophosphorylated CPK28 had enhanced activity at physiological concentrations of Ca2+ compared to dephosphorylated protein, suggesting that autophosphorylation functions to prime CPK28 for Ca2+-activation. Furthermore, CPK28 autophosphorylation substantially reduced sensitivity of the kinase to Ca2+/CaM inhibition. Overall, our analyses uncover new complexities in the control of CPK28 and provide mechanistic support for Ca2+ signaling specificity through Ca2+ sensor priming

    Tamm Review: Management of mixed-severity fire regime forests in Oregon, Washington, and Northern California

    Get PDF
    Increasingly, objectives for forests with moderate- or mixed-severity fire regimes are to restore successionally diverse landscapes that are resistant and resilient to current and future stressors. Maintaining native species and characteristic processes requires this successional diversity, but methods to achieve it are poorly explained in the literature. In the Inland Pacific US, large, old, early seral trees were a key historical feature of many young and old forest successional patches, especially where fires frequently occurred. Large, old trees are naturally fire-tolerant, but today are often threatened by dense understory cohorts that create fuel ladders that alter likely post-fire successional pathways. Reducing these understories can contribute to resistance by creating conditions where canopy trees will survive disturbances and climatic stressors; these survivors are important seed sources, soil protectors, and critical habitat elements. Historical timber harvesting has skewed tree size and age class distributions, created hard edges, and altered native patch sizes. Manipulating these altered forests to promote development of larger patches of older, larger, and more widely-spaced trees with diverse understories will increase landscape resistance to severe fires, and enhance wildlife habitat for underrepresented conditions. Closed-canopy, multi-layered patches that develop in hot, dry summer environments are vulnerable to droughts, and they increase landscape vulnerability to insect outbreaks and severe wildfires. These same patches provide habitat for species such as the northern spotted owl, which has benefited from increased habitat area. Regional and local planning will be critical for gauging risks, evaluating trade-offs, and restoring dynamics that can support these and other species. The goal will be to manage for heterogeneous landscapes that include variably-sized patches of (1) young, middle-aged, and old, closed canopy forests growing in upper montane, northerly aspect, and valley bottom settings, (2) a similar diversity of open-canopy, fire-tolerant patches growing on ridgetops, southerly aspects, and lower montane settings, and (3) significant montane chaparral and grassland areas. Tools to achieve this goal include managed wildfire, prescribed burning, and variable density thinning at small to large scales. Specifics on ‘‘how much and where?” will vary according to physiographic, topographic and historical templates, and regulatory requirements, and be determined by means of a socio-ecological process

    Overview of Glacial Atlantic Ocean Mapping (GLAMAP 2000)

    Get PDF
    GLAMAP 2000 presents new reconstructions of the Atlantic's sea surface temperatures (SST) at the Last Glacial Maximum (LGM), defined at both 21,500–18,000 years B.P. (“Last Isotope Maximum”) and 23,000–19,000 years B.P. (maximum glacial sea level low stand and orbital minimum of solar insolation; EPILOG working group; see Mix et al. [2001]). These reconstructions use 275 sediment cores between the North Pole and 60°S with carefully defined chronostratigraphies. Four categories of core quality are distinguished. More than 100 core sections provide a glacial record with subcentennial- to multicentennial-scale resolution. SST estimates are based on a new set of almost 1000 reference samples of modern planktic foraminifera and on improved transfer-function techniques to deduce SST from census counts of microfossils, including radiolarians and diatoms. New proxies also serve to deduce sea ice boundaries. The GLAMAP 2000 SST patterns differ significantly in crucial regions from the CLIMAP [1981] reconstruction and thus are important in providing updated boundary conditions to initiate and validate computational models for climate prediction

    Tamm Review: Management of mixed-severity fire regime forests in Oregon, Washington, and Northern California

    Get PDF
    Increasingly, objectives for forests with moderate- or mixed-severity fire regimes are to restore successionally diverse landscapes that are resistant and resilient to current and future stressors. Maintaining native species and characteristic processes requires this successional diversity, but methods to achieve it are poorly explained in the literature. In the Inland Pacific US, large, old, early seral trees were a key historical feature of many young and old forest successional patches, especially where fires frequently occurred. Large, old trees are naturally fire-tolerant, but today are often threatened by dense understory cohorts that create fuel ladders that alter likely post-fire successional pathways. Reducing these understories can contribute to resistance by creating conditions where canopy trees will survive disturbances and climatic stressors; these survivors are important seed sources, soil protectors, and critical habitat elements. Historical timber harvesting has skewed tree size and age class distributions, created hard edges, and altered native patch sizes. Manipulating these altered forests to promote development of larger patches of older, larger, and more widely-spaced trees with diverse understories will increase landscape resistance to severe fires, and enhance wildlife habitat for underrepresented conditions. Closed-canopy, multi-layered patches that develop in hot, dry summer environments are vulnerable to droughts, and they increase landscape vulnerability to insect outbreaks and severe wildfires. These same patches provide habitat for species such as the northern spotted owl, which has benefited from increased habitat area. Regional and local planning will be critical for gauging risks, evaluating trade-offs, and restoring dynamics that can support these and other species. The goal will be to manage for heterogeneous landscapes that include variably-sized patches of (1) young, middle-aged, and old, closed canopy forests growing in upper montane, northerly aspect, and valley bottom settings, (2) a similar diversity of open-canopy, fire-tolerant patches growing on ridgetops, southerly aspects, and lower montane settings, and (3) significant montane chaparral and grassland areas. Tools to achieve this goal include managed wildfire, prescribed burning, and variable density thinning at small to large scales. Specifics on ‘‘how much and where?” will vary according to physiographic, topographic and historical templates, and regulatory requirements, and be determined by means of a socio-ecological process
    • 

    corecore