88 research outputs found

    Orléans – Rue d’Escures

    Get PDF
    L’installation d’un réseau de chauffage urbain et d’électricité a nécessité l’ouverture d’une large tranchée au centre de la rue d’Escures, dans le sens de la longueur de la rue, c’est-à-dire globalement est-ouest. Initialement prévue sur le tracé de réseaux déjà existants, cette tranchée a en réalité outrepassé ces limites et a révélé, en coupe, un certain nombre de vestiges archéologiques. À l’extrémité ouest de la tranchée, six sépultures et plusieurs os humains épars ont été repérés. Le m..

    Orléans – 5 rue Charles-Péguy

    Get PDF
    Le diagnostic du 5 rue Charles-Péguy s’est déroulé du 11 au 20 décembre 2017, puis du 12 au 16 février 2018. La parcelle diagnostiquée est localisée à l’est du centre-ville, dans un secteur ayant déjà livré un certain nombre de vestiges antiques. Situé sur le coteau de la rive droite de la Loire, le site se caractérise par un pendage important du nord vers le sud. Le substrat est composé de marne calcaire surmontée d’alluvions anciennes. Il apparaît à des altitudes diverses : au plus haut, 10..

    Orléans – Parvis de l’église Saint-Marceau

    Get PDF
    Une tranchée d’enfouissement de réseau raccordant les jardins du presbytère à la rue Saint-Marceau a mis au jour de nombreux restes humains. Cette tranchée est-ouest de 20 m de long sur 1,20 m de profondeur était située immédiatement à l’ouest de l’ancienne église Saint-Marceau et au sud-ouest de la nouvelle église, construite au xixe s. Six sépultures et quatre fosses contenant des os humains épars ont été mises à jour. Malgré la datation incertaine des tombes, entre le bas Moyen Âge et l’Ép..

    Orléans – 28 rue de l’Ételon, lycée Saint-Euverte

    Get PDF
    La fouille archéologique du 28 rue de l’Ételon, lycée Saint-Euverte, à Orléans s’est déroulée entre mars et juin 2017, avec une équipe composée en moyenne de 5 archéologues. Cette fouille faisait suite à un diagnostic réalisé par le Pôle d’archéologie de la ville d’Orléans durant l’été 2016 (Courtois, Ladam 2016). Au sein de l’emprise du lycée, l’opération archéologique se situe à l’emplacement de deux anciens bâtiments en front de boulevard et précède la construction d’un nouveau bâtiment pr..

    A comparative review on the well-studied GAT1 and the understudied BGT-1 in the brain

    Get PDF
    γ-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system (CNS). Its homeostasis is maintained by neuronal and glial GABA transporters (GATs). The four GATs identified in humans are GAT1 (SLC6A1), GAT2 (SLC6A13), GAT3 (SLC6A11), and betaine/GABA transporter-1 BGT-1 (SLC6A12) which are all members of the solute carrier 6 (SLC6) family of sodium-dependent transporters. While GAT1 has been investigated extensively, the other GABA transporters are less studied and their role in CNS is not clearly defined. Altered GABAergic neurotransmission is involved in different diseases, but the importance of the different transporters remained understudied and limits drug targeting. In this review, the well-studied GABA transporter GAT1 is compared with the less-studied BGT-1 with the aim to leverage the knowledge on GAT1 to shed new light on the open questions concerning BGT-1. The most recent knowledge on transporter structure, functions, expression, and localization is discussed along with their specific role as drug targets for neurological and neurodegenerative disorders. We review and discuss data on the binding sites for Na+, Cl−, substrates, and inhibitors by building on the recent cryo-EM structure of GAT1 to highlight specific molecular determinants of transporter functions. The role of the two proteins in GABA homeostasis is investigated by looking at the transport coupling mechanism, as well as structural and kinetic transport models. Furthermore, we review information on selective inhibitors together with the pharmacophore hypothesis of transporter substrates

    Genetic polymorphisms of the GNRH1 and GNRHR genes and risk of breast cancer in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3)

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Background Gonadotropin releasing hormone (GNRH1) triggers the release of follicle stimulating hormone and luteinizing hormone from the pituitary. Genetic variants in the gene encoding GNRH1 or its receptor may influence breast cancer risk by modulating production of ovarian steroid hormones. We studied the association between breast cancer risk and polymorphisms in genes that code for GNRH1 and its receptor (GNRHR) in the large National Cancer Institute Breast and Prostate Cancer Cohort Consortium (NCI-BPC3). Methods We sequenced exons of GNRH1 and GNRHR in 95 invasive breast cancer cases. Resulting single nucleotide polymorphisms (SNPs) were genotyped and used to identify haplotype-tagging SNPs (htSNPS) in a panel of 349 healthy women. The htSNPs were genotyped in 5,603 invasive breast cancer cases and 7,480 controls from the Cancer Prevention Study-II (CPS-II), European Prospective Investigation on Cancer and Nutrition (EPIC), Multiethnic Cohort (MEC), Nurses' Health Study (NHS), and Women's Health Study (WHS). Circulating levels of sex steroids (androstenedione, estradiol, estrone and testosterone) were also measured in 4713 study subjects. Results Breast cancer risk was not associated with any polymorphism or haplotype in the GNRH1 and GNRHR genes, nor were there any statistically significant interactions with known breast cancer risk factors. Polymorphisms in these two genes were not strongly associated with circulating hormone levels. Conclusion Common variants of the GNRH1 and GNRHR genes are not associated with risk of invasive breast cancer in Caucasians.Published versio

    Vitamin D Receptor Polymorphisms and Breast Cancer Risk: Results from the National Cancer Institute Breast and Prostate Cancer Cohort Consortium

    Get PDF
    Background: Vitamin D is hypothesized to lower the risk of breast cancer by inhibiting cell proliferation via the nuclear vitamin D receptor (VDR). Two common single nucleotide polymorphisms (SNP) in the VDR gene ( VDR ), rs1544410 ( Bsm I), and rs2228570 ( Fok I), have been inconsistently associated with breast cancer risk. Increased risk has been reported for the Fok I ff genotype, which encodes a less transcriptionally active isoform of VDR , and reduced risk has been reported for the Bsm I BB genotype, a SNP in strong linkage disequilibrium with a 3′-untranslated region, which may influence VDR mRNA stability. Methods: We pooled data from 6 prospective studies in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium to examine associations between these SNPs and breast cancer among >6,300 cases and 8,100 controls for each SNP using conditional logistic regression. Results: The odds ratio (OR) for the rs2228570 ( Fok I) ff versus FF genotype in the overall population was statistically significantly elevated [OR, 1.16; 95% confidence interval (95% CI), 1.04-1.28] but was weaker once data from the cohort with previously published positive findings were removed (OR, 1.10; 95% CI, 0.98-1.24). No association was noted between rs1544410 ( Bsm I) BB and breast cancer risk overall (OR, 0.98; 95% CI, 0.89-1.09), but the BB genotype was associated with a significantly lower risk of advanced breast cancer (OR, 0.74; 95% CI, 0.60-0.92). Conclusions: Although the evidence for independent contributions of these variants to breast cancer susceptibility remains equivocal, future large studies should integrate genetic variation in VDR with biomarkers of vitamin D status. (Cancer Epidemiol Biomarkers Prev 2009;18(1):297–305

    IGF-1, IGFBP-1, and IGFBP-3 Polymorphisms Predict Circulating IGF Levels but Not Breast Cancer Risk: Findings from the Breast and Prostate Cancer Cohort Consortium (BPC3)

    Get PDF
    IGF-1 has been shown to promote proliferation of normal epithelial breast cells, and the IGF pathway has also been linked to mammary carcinogenesis in animal models. We comprehensively examined the association between common genetic variation in the IGF1, IGFBP1, and IGFBP3 genes in relation to circulating IGF-I and IGFBP-3 levels and breast cancer risk within the NCI Breast and Prostate Cancer Cohort Consortium (BPC3). This analysis included 6,912 breast cancer cases and 8,891 matched controls (n = 6,410 for circulating IGF-I and 6,275 for circulating IGFBP-3 analyses) comprised primarily of Caucasian women drawn from six large cohorts. Linkage disequilibrium and haplotype patterns were characterized in the regions surrounding IGF1 and the genes coding for two of its binding proteins, IGFBP1 and IGFBP3. In total, thirty haplotype-tagging single nucleotide polymorphisms (htSNP) were selected to provide high coverage of common haplotypes; the haplotype structure was defined across four haplotype blocks for IGF1 and three for IGFBP1 and IGFBP3. Specific IGF1 SNPs individually accounted for up to 5% change in circulating IGF-I levels and individual IGFBP3 SNPs were associated up to 12% change in circulating IGFBP-3 levels, but no associations were observed between these polymorphisms and breast cancer risk. Logistic regression analyses found no associations between breast cancer and any htSNPs or haplotypes in IGF1, IGFBP1, or IGFBP3. No effect modification was observed in analyses stratified by menopausal status, family history of breast cancer, body mass index, or postmenopausal hormone therapy, or for analyses stratified by stage at diagnosis or hormone receptor status. In summary, the impact of genetic variation in IGF1 and IGFBP3 on circulating IGF levels does not appear to substantially influence breast cancer risk substantially among primarily Caucasian postmenopausal women

    SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues.

    Get PDF
    There is pressing urgency to understand the pathogenesis of the severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2), which causes the disease COVID-19. SARS-CoV-2 spike (S) protein binds angiotensin-converting enzyme 2 (ACE2), and in concert with host proteases, principally transmembrane serine protease 2 (TMPRSS2), promotes cellular entry. The cell subsets targeted by SARS-CoV-2 in host tissues and the factors that regulate ACE2 expression remain unknown. Here, we leverage human, non-human primate, and mouse single-cell RNA-sequencing (scRNA-seq) datasets across health and disease to uncover putative targets of SARS-CoV-2 among tissue-resident cell subsets. We identify ACE2 and TMPRSS2 co-expressing cells within lung type II pneumocytes, ileal absorptive enterocytes, and nasal goblet secretory cells. Strikingly, we discovered that ACE2 is a human interferon-stimulated gene (ISG) in vitro using airway epithelial cells and extend our findings to in vivo viral infections. Our data suggest that SARS-CoV-2 could exploit species-specific interferon-driven upregulation of ACE2, a tissue-protective mediator during lung injury, to enhance infection

    HIV/SIV Infection Primes Monocytes and Dendritic Cells for Apoptosis

    Get PDF
    Subversion or exacerbation of antigen-presenting cells (APC) death modulates host/pathogen equilibrium. We demonstrated during in vitro differentiation of monocyte-derived macrophages and monocyte-derived dendritic cells (DCs) that HIV sensitizes the cells to undergo apoptosis in response to TRAIL and FasL, respectively. In addition, we found that HIV-1 increased the levels of pro-apoptotic Bax and Bak molecules and decreased the levels of anti-apoptotic Mcl-1 and FLIP proteins. To assess the relevance of these observations in the context of an experimental model of HIV infection, we investigated the death of APC during pathogenic SIV-infection in rhesus macaques (RMs). We demonstrated increased apoptosis, during the acute phase, of both peripheral blood DCs and monocytes (CD14+) from SIV+RMs, associated with a dysregulation in the balance of pro- and anti-apoptotic molecules. Caspase-inhibitor and death receptors antagonists prevented apoptosis of APCs from SIV+RMs. Furthermore, increased levels of FasL in the sera of pathogenic SIV+RMs were detected, compared to non-pathogenic SIV infection of African green monkey. We suggest that inappropriate apoptosis of antigen-presenting cells may contribute to dysregulation of cellular immunity early in the process of HIV/SIV infection
    corecore