2,568 research outputs found

    Two-component Bose gas in an optical lattice at single-particle filling

    Full text link
    The Bose-Hubbard model of a two-fold degenerate Bose gas is studied in an optical lattice with one particle per site and virtual tunneling to empty and doubly-occupied sites. An effective Hamiltonian for this system is derived within a continued-fraction approach. The ground state of the effective model is studied in mean-field approximation for a modulated optical lattice. A dimerized mean-field state gives a Mott insulator whereas the lattice without modulations develops long-range correlated phase fluctuations due to a Goldstone mode. This result is discussed in comparison with the superfluid and the Mott-insulating state of a single-component hard-core Bose.Comment: 11 page

    Offshore LNG Production

    Get PDF
    A natural gas liquefaction plant was designed for offshore production of LNG, using only N2 and CO2 as refrigerants in the cooling cycles to avoid potential hazards of mixed hydrocarbon refrigerants. The process was designed to accommodate 13,500 lb-mole/hr (roughly 1MMmtpa) of raw natural gas feed, and fits within all parameters required in the process specifications. Safety concerns, the start-up process, and other potential considerations are also included. The Net Present Value of the project was found to be $37M at an internal rate of return (IRR) of 18.4%. Further analysis of the assumptions made in these calculations may be required before final project approval is made; however, estimates tend towards conservatism

    Fault-tolerance techniques for hybrid CMOS/nanoarchitecture

    Get PDF
    The authors propose two fault-tolerance techniques for hybrid CMOS/nanoarchitecture implementing logic functions as look-up tables. The authors compare the efficiency of the proposed techniques with recently reported methods that use single coding schemes in tolerating high fault rates in nanoscale fabrics. Both proposed techniques are based on error correcting codes to tackle different fault rates. In the first technique, the authors implement a combined two-dimensional coding scheme using Hamming and Bose-Chaudhuri-Hocquenghem (BCH) codes to address fault rates greater than 5. In the second technique, Hamming coding is complemented with bad line exclusion technique to tolerate fault rates higher than the first proposed technique (up to 20). The authors have also estimated the improvement that can be achieved in the circuit reliability in the presence of Don-t Care Conditions. The area, latency and energy costs of the proposed techniques were also estimated in the CMOS domain

    P-[N-(Diphenyl­phospho­rothio­yl)iso­propyl­amino]-N-isopropyl-P-phenyl­thio­phosphinic amide

    Get PDF
    The title compound, C24H30N2P2S2, was obtained by the reaction of Ph2PN(iPr)P(Ph)N(iPr)H with elemental sulfur in tetra­hydro­furan. In the solid state, intra­molecular N—H⋯S hydrogen bonding influences the mol­ecular conformation; a P—N—P—N torsion angle of 2.28 (9)° is observed. The two phenyl rings attached to one P atom form a dihedral angle of 74.02 (4)°

    Edge-Graph Diameter Bounds for Convex Polytopes with Few Facets

    Full text link
    We show that the edge graph of a 6-dimensional polytope with 12 facets has diameter at most 6, thus verifying the d-step conjecture of Klee and Walkup in the case of d=6. This implies that for all pairs (d,n) with n-d \leq 6 the diameter of the edge graph of a d-polytope with n facets is bounded by 6, which proves the Hirsch conjecture for all n-d \leq 6. We show this result by showing this bound for a more general structure -- so-called matroid polytopes -- by reduction to a small number of satisfiability problems.Comment: 9 pages; update shortcut constraint discussio

    Early Cenozoic denudation of central west Britain in response to transient and permanent uplift above a mantle plume

    Get PDF
    Upwelling mantle plumes beneath continental crust are predicted to produce difficult to quantify, modest uplift and denudation. The contribution of permanent and transient components to the uplift is also difficult to distinguish. A pulse of denudation in Britain in the Early Paleogene has been linked, although with some controversy, with the arrival of the proto-Iceland mantle plume. In this contribution we show that combining apatite and zircon (U-Th-Sm)/He and apatite fission track analyses from central west Britain with numerical modeling clearly identifies a pulse of early Cenozoic denudation. The data indicate that rock uplift and denudation were centered on the northern East Irish Sea Basin and 1.0–2.4 km of rocks were removed during the latest Cretaceous-early Paleogene. Uplift and erosion appears to have started a few million years before the earliest magmatism in the region. The regional denudation pattern mirrors the distribution of low-density magmatic rocks that has been imaged in the deep crust. However, the injection of the underplating melt is not enough to account for the total denudation. An additional regional uplift of at least 300 m is required, which is consistent with a transient thermal effect from the hot mantle plume. The rapid exhumation event ceased by ~40 Ma and the data do not require significant Neogene exhumation

    Comparison of collapsing methods for the statistical analysis of rare variants

    Get PDF
    Novel technologies allow sequencing of whole genomes and are considered as an emerging approach for the identification of rare disease-associated variants. Recent studies have shown that multiple rare variants can explain a particular proportion of the genetic basis for disease. Following this assumption, we compare five collapsing approaches to test for groupwise association with disease status, using simulated data provided by Genetic Analysis Workshop 17 (GAW17). Variants are collapsed in different scenarios per gene according to different minor allele frequency (MAF) thresholds and their functionality. For comparing the different approaches, we consider the family-wise error rate and the power. Most of the methods could maintain the nominal type I error levels well for small MAF thresholds, but the power was generally low. Although the methods considered in this report are common approaches for analyzing rare variants, they performed poorly with respect to the simulated disease phenotype in the GAW17 data set

    Polarized Structure Function σ\u3csub\u3eLT\u27\u3c/sub\u3e from ⁰p Electroproduction Data in the Resonance Region at 0.2 GeV² \u3c Q² \u3c 1.0 GeV²

    Get PDF
    The first results on the σLT′ structure function in exclusive π0p electroproduction at invariant masses of the final state of 1.5GeV \u3c W \u3c 1.8 GeV and in the range of photon virtualities 0.4 GeV2 \u3c Q2 \u3c 1.0 GeV2 were obtained from data on beam spin asymmetries and differential cross sections measured with the CLAS detector at Jefferson Lab. The Legendre moments determined from the σLT′ structure function have demonstrated sensitivity to the contributions from the nucleon resonances in the second and third resonance regions. These new data on the beam spin asymmetries in π0p electroproduction extend the opportunities for the extraction of the nucleon resonance electro-excitation amplitudes in the mass range above 1.6 GeV
    corecore