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Abstract

We propose two fault tolerance techniques for hybrid CMOS/nano actiiiteimplementing logic functions as
Look-Up Tables. We compare the efficiency of the proposed techsiguth recently reported methods that use
single coding schemes in tolerating high fault rates in nanoscale fabitis.fBoposed techniques are based on error
correcting codes to tackle different fault rates. In the first technigpegmplement a combined two dimensional coding
scheme using Hamming and BCH codes to address fault rates greateg%hdn the second technique, Hamming
coding is complemented with Bad Line Exclusion technique to tolerate fauls tdtgher than the first proposed
technique (up to 20%). We have also estimated the improvement that cachieved in the circuit reliability in
the presence of Don't Care Conditions. The area, latency and eweryy of the proposed techniques were also
estimated in the CMOS domain.

I. INTRODUCTION

Molecular electronics holds the promise to overcome thesjglaylimitation of lithography-based VLSI technology
and offer the possibility of significantly denser circuitdowever, tremendous growth in device density will be
accompanied by a substantial increase in hard [1], [2], @] soft [4], [5], [6] faults. To achieve acceptable levels
of manufacturing yield and computational reliability, fatolerance must be integrated into the design flow of
nanoscale circuits.

Much work has already been done in the area of fault tolefamoilance for nanotechnology to increase circuit
reliability in the presence of increased hard and soft erates. One of the proposed techniques, Triple-Modular-
Redundancy (TMR), is based on the use of three copies of the saodule and an arbitration unit [7], [8]. TMR
technique fails when there are faults in more than one moduie reliability of TMR is also limited by that of
the final arbitration unit making this approach insufficiemthe presence of high defect rates [7]. Reconfiguration
is another technique that can circumvent physical defegtiret mapping defects on reconfigurable fabrics then
synthesising a feasible configuration to realise an appdicdor each nanofabric instance [9], [10], [11]. However,

defect mapping and reconfiguration is performed on a per bagis which poses a scalability challenge. The
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prohibitively low reliability of these new nanodevices ®@ites that they must be interfaced with CMOS circuits to
tolerate the inevitable high fault rates. This leads to a pavadigm of hybrid CMOS/Nano architecture [12], [13],
[14], [15] to perform reliable computing using unreliablengponents (nanodevices). In this architecture, nanoscale
devices offer a highly dense fabric for data storage and ctatipn, whereas CMOS components are utilised for
interfacing and for highly critical circuit operations. 80CMOS circuits and high fault rates will reduce the net
density delivered by these nanodevices.

Recently, Error Correcting Codes (ECC) have been proposedmomising approach to improve the reliability
and yield of heterogeneous CMOS/nanodevices systems2]n[f], ECCs were mainly used for the suppression of
soft errors rather than physical defects i.e. maintainiregfault tolerance level rather than enhancing defectdalss.

In [12], authors suggested a hybrid fault tolerance teamnipased on Hamming code and reconfiguration. In [6],
the authors proposed an implementation of ECCs based oméloeytof Markov random fields (MRF) to combat
soft faults thus increasing the reliability of hybrid syst In [13], two nanoelectronic memory fault-tolerant syst
design approaches based on Bose-Chaudhuri-Hocquengh@hh) @des were suggested. Previously, single error
correcting codes such as Hamming and BCH have been used aomitext of reliable memory designs [12], [16].
In [16], the authors explored combining error correctionle® with various repair techniques to combat the high
defect rates in hybrid CMOS/Nano fabrics with particulacde on memory architectures. The previous works have
only addressed fault tolerance in memory architecture48@sed techniques can also be applied to memory-based
implementation of logic circuits (i.e. Look-up Tables) whiincludes Don’t Care Conditions (DCCs). The presence
of DCCs in Boolean logic functions presents a strong casepplyahese techniques to circuits implemented as
Look-Up Tables (LUTs) on CMOS/nanodevice fabrics. As wd d@dmonstrate in this work, the existence of DCCs
can be exploited in this type of architecture since it helpsniasking of erroneous bits which is not possible in
memory design.

Fig. 1 gives an overview of the targeted hybrid CMOS/nanditecture. The proposed architecture is technology-
independent i.e. the nanoscale fabric is built using anyhefrecently proposed nanodevices including carbon nan-
otubes (CNT) or silicon nano-wires (NW). The techniques peagl in this work target CMOS/nano computational
architecture incorporating a LUT implementation of logimétions, as outlined in [17]. LUT implementation is an
effective functional-coding approach that provides l@wel protection of individual Boolean functions [18], [19]

In our experiments, the LUTs under test are representedrmoraly generated symmetric matrices of sizes ranging
from 28 x 3 to £ x 6 where the probability of 0 and 1 are equal. The errors asziafl randomly in the nanofabric
causing the corresponding bits to change their values(i-e.0 or 0— 1). We have assumed random distribution
of errors to simulate the worst case scenario as correlatetsare technology specific. The proposed fault tolerant
techniques are based on ECC and partial redundancy to adidegpermanent and transient faults in nanoscale
LUTSs. In the first technique, we implement a two dimensioralicg scheme using Hamming and BCH codes to
address both hard and soft errors in the presence of highraels. In the second technique, we target the high
physical defect rates in the nanofabric by integrating E@@k bad line exclusion technique. In this technique,

the high bit density offered by nanodevices is exploited tovige the necessary spare rows to compensate for
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Fig. 1. Hybrid Nano/CMOS Architecture Overview

the defective lines. While the exact manufacturing defetg end transient error rate are not yet pinpointed, it
is believed that they will easily exceed 10% [2]. The authiar§l7] assume small fault rates (less than 10%) in
nanofabrics for small LUT sizes with 50% of LUT entries seDam’'t Care Conditions (DCC). We first investigate

the effectiveness of our proposed techniques over the metid], [12] in high defect rate scenario.

Il. PRIMITIVES

We first examine the ineffectiveness of using single ECCé sasscHamming and BCH in the presence of high

error rates for different LUT sizes.

A. Hamming

Hamming is a single-error-correcting and double-errdedéng code i.e. the code is capable of correcting one
error and detecting two errors in a codeword. A typical Hamgrgode is (2'— 1, 2" —m-—1), in other words, for
2™ —m- 1 data bitsm parity bits need to be added for full protection.

To demonstrate the reliability improvement that can beeaad from the techniques discussed in this work, we
have performed experiments on randomly-generated syrnunetiTs where the probability of 0 and 1 are equal.
The LUTSs are of sizes ranging fron? 2 3 (3 inputs, 3 outputs) to®2 6 (6 inputs, 6 outputs). The circuit failure
probability Ry, resulting from randomly injectingn errors, is obtained by calculating the ratio of defectiveTisU
after decoding to the total number simulation iteratidns 5000. In this work, we assume that a nanodevice is
subject to both stuck-open and stuck-short defects witlalggrobabilities. We also assume that errors are uniformly
distributed across the fabric where both physical and teabh®rrors are random and statistically independent. For
comparison purposes, we use the simple Hamming code [17tefer@nce point for the evaluation of our proposed
techniques.

Theoretically, the probability of a row of lengthhaving m defective bits is given by the following binomial

equation:

Pm) = () Pra-P) " @
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Fig. 2. Hamming - Failure rate obtained through simulation ety Fig. 3. Hamming - Effect of varying LUT size on failure rate

whereP is the error rate of the fabric. The probability that the Hamgnmdecoder fails to correctly decode an
erroneous codeword is equal to the probability of havingarban one error per row. Using equation (1), this is

given by the following equation:

b _ r+§:r (r + I’par) Pk(l . P)r+rpar—k (2)
& k

wherer andrpsr are the number of bits and number of parity bits in a row rethpelg. The failure rate of a

LUT with ¢ columns is equal to the probability that at least one row fectere and it can be computed as:

¢ /c
Ptailure = Z ( )Prlgw(l—Prow)Ck 3)

&1 \K
In the case of 2x 4 LUT, equations (2) and (3) can be rewritten as:

437443
PrOW: Z ( Kk )Pk(lp)4+3_k
k=2

1 (16\ 16—k
Prailure = ) K Prow(1— Prow)
=1

Fig. 2 illustrates the failure rate obtained both theosdtjc(using equations 2 and 3) and through the above
simulation procedure. As can be seen, the two graphs arestlidentical, validating the derived theoretical
equations.

Fig. 3 shows the variation of failure rate with respect toesal/percentages of injected error rates for different
LUT sizes. For defect rates as small as 1%, the Hamming codectlg detects and corrects all faults for LUTs

of sizes smaller or equal to*X 4 as reported in [17]. However, it can be seen that even foral 4T size of
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23 x 3, and error rate greater than 5%, more than 10% of circuits\i&e can also observe that as the LUT size

increases, the fault tolerance of the circuit falls morddigpindicating the inefficiency of this scheme.

B. Bose-Chaudhuri-Hocquenghem (BCH)

In this section, we examine fault tolerant approach usimgngier BCH coding and evaluate its efficiency in
dealing with the high defect probabilities in nanoscale ISUBCH is a multilevel, variable length and easy to
decode ECC used to correct multiple random errors in a codbwidie simplest form of BCH codes is the single
error-correcting BCH(7,4,1) which is equivalent to Hamgaode. We first examine BCH [13] with 0% Don't Care
Conditions using BCH(15,7,2), which adds 8 parity bits inlerto detect and correct 2 errors in the codeword.
The required word length is 7 bits; however the size of eadtyén our LUT is only 4-bits in the case of*Z 4
LUT. Therefore, we need to pad the data bits with the necedsts so that it is equal to the required data word
size, as shown in Fig. 4.

The graph shown in Fig. 5 represents the failure rate actiiegéng the 2-bit error-correction BCH and in the
absence of DCCs. The fault tolerance obtained from the sitionl results revealed a performance very similar to
Hamming. The reason behind this is that even though the B&R() code can tolerate more errors than single
error correction techniques, there is a higher probabdfterrors per codeword in LUTs. The padded bits and the
redundant bits added to the data word doubles the prohabflifaults in each entry of the LUT. The codeword is
15-bit long for the 2-bit error-correction BCH which is twidonger than the 7-bit long codeword for the single
error correcting Hamming code. Hence, strong ECCs have dpahility of tolerating more errors at the cost of
more parity bits added to the codeword, which in turn makestimore vulnerable to higher fault rates; and hence
a rapid drop in their efficiency as the fault rate increaseth@LUTSs.

Instead of coding row entries in LUTSs, we use stronger ECCh a8 BCH codes to encode columns. BCH(31,16,3)
for example can detect and correct 3 errors per column, kheatost of adding 15 parity bits. The results obtained
from simulations are shown in Fig. 5. For low error rates, B&thibits a better performance than Hamming. At
5% of errors, we can notice a 70% improvement in failure ratr étlamming. However, when errors exceed 10%,

this coding technique completely fails.

Ill. PROPOSEDFAULT TOLERANCE TECHNIQUES

In this section, we present two different hybrid fault talet techniques to address the high fault rates in nano-
LUTs. As we have seen earlier, single error correction s@seprove to be inefficient in dealing with such high
error rates. The first proposed approach combines Hammith@®&i to target higher error rates (greater than 5%),

while the second technique combines Hamming with Bad Linelusion to address error rates as high as 20%.
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Fig. 5. Failure rate comparison between different 1-D codeahniques

A. Combined Two-Dimensional Coding : Technique 1

To reduce the failure rate for fault rates exceeding 5%, wplémented a two-dimensional coding technique
based on Hamming and BCH codes (also knowrpesluct code[20]). The idea is to encode both rows and
columns in LUTs as shown in Fig.6(a). The single error caimgcHamming code is used to encode data bits in
each row of the LUT, and then a BCH code is used to encode edeimooRetrieving data from the encoded LUT
comprises of two decoding steps. In the first step, columediest decoded using the BCH decoder. This step will
allow the detection and correction of the biggest portiorwbrs because of the capability of the BCH decoder to
correct more errors in the codeword than the Hamming decddien, in the second decoding step, the Hamming
decoder is used to remove the remaining faults.

We can further improve the fault tolerance of this techniyeaising systematic BCH code along witheck bits
as illustrated in Fig.6(b). In systematic block codes, détsremain unchanged in the codeword, and the parity bits
are attached to the end of the data bit sequence. We expéoftath that the number of 1's in any wrong decoded
word will most probably be different from the number of 1'stire expected correct word. Therefore, we use check
bits to store the number of 1's of each column after all rowrieatof LUT are encoded using Hamming. If the
number of faults per column exceeds the error correctingluiéify limit of Systematic BCH, the BCH decoder
will generate the wrong output and hence cause the entihaitpee to fail. Therefore, to avoid failure, the check
bits are always compared with the number of 1's of the outpB@H decoder, if they are not equal, the codeword
remains unchanged and all the faults in the first 16 bits otttireesponding column are left to the second iteration
of decoding to be corrected using the Hamming decoder. Thedtart in Fig. 7 illustrates the decoding process
to retrieve rowM from a LUT of size 2 x N.

Assuming the same error probabiliB for each bit, the probability of havingh defective bits in a column of
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length (c+ cpar) follows the binomial distribution given in equation (1). &iefore, the probability that the BCH

decoder fails to correct a column because the number ofsfexiteeds its correction capabilibgh err is given
by:

C-+Cpar

Pugl — ; <C +:par> Pk(l _ P)c+cpar7k
k=bch err+1

wherec and cpar are the number of bits and number of parity bits in a columpeetvely.

“4)
The BCH correction of columns reduces the probability of tabiging erroneous by a factor 8. Therefore,
the remaining faults which are randomly distributed over tbhws will have a new error probabilitgey that is
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given by the following equation:

Prew= P X Pl (5)

Using this new error rate, the failure rate for each row aftamming decoding is obtained using equation (2),

as follows:

P, =
row kZZ k

Hence, the final failure probability of our combined 2D caglitechnique is computed as:

I+ par r4r
< i Par) Pheu(1 — Poew)" 1oa ¥ (6)

Ptailure = 1 — (1— F’row)r (7)
For the example used in Fig. 6, equations (4), (6) and (7)cedo:

16415 116+ 15
PCO| — Z ( k > Pk(l— P)16+l57k
k=3+1

437443
I:)row: Z ( Kk )Pr‘:ew(l_Pnew)4+3_k
k=2

Ptailure = 1— (1— I:)row)w

Fig. 8 shows the failure rate obtained both theoreticayifre) and through simulation in the case of 24

LUT. As we can see, there is an excellent correlation betveagerimental and theoretical results.

May 12, 2009 DRAFT


Saket
Highlight

Saket
Highlight


The plots for simulation results of the circuit failure rdte Hamming (7,4,1), BCH (31,16,3) and 2D coding
techniques are shown in Fig. 9. It can be seen that for ertes immaller than 15% 2D coding technique (without
check bits) exhibits better tolerance than both Hamming B@#i. For example, when the percentage of injected
faults is 5%, 2D coding perfectly detects and corrects gdted faults, whereas Hamming code achieves a failure
rate of approximately 45%. However, as the fault rate inseeabeyond 15%, this technique completely fails. This
improvement in reliability is achieved at the cost of a highamber of parity bits which will result in additional
area and energy overhead.

Fig. 9 also illustrates the enhancement achieved in faldtraoce by incorporating the check bits into the
technique. 2D coding with check bits achieves significattlyer failure rates for error rates greater than 5% and
upto 10% as compared to basic 2D coding technique resutiag improvement of 37% in fault tolerance. As can
be seen, using check bits will improve the fault-tolerantew combined 2D coding technique. However, the need
to store the number of 1's in a highly-reliable memory (itere at most approximate[yog, (numows) X NUMolumng
bits in a CMOS memory) will incur an extra area and delay ogaththat need to be evaluated based on practical
IC designs as explained in Section IV.

Next we examine the effect of varying LUT size on circuit abliity. As can be seen in Fig. 10, the failure rate
increases rapidly for bigger LUTs. For a fault density of 10%e failure probability to successfully instantiate a
LUT on the defective nanofabric increases from 5% in the cd<® x 3 LUT to complete failure for 2x 6 LUT.
Comparing the results of Fig. 10 with Fig. 3, we can obsena tombined 2D coding technique outperforms
single dimensional coding in terms of fault tolerance deesjpé insufficiency in coping with fault rates higher than
10% and bigger LUT sizes. In the case 26 LUT, we can observe a nearly 0% failure rate at 5% error rate,
whereas Hamming completely fails.

Boolean functions are defined by their On-set, OFF-set ardt DCC-set [17]. If an entry in a LUT is a
DCC, the output can be either 0 or 1. We examine the impact c€®6n our 2D coding technique. In order to
theoretically calculate the circuit failure rate given fhercentage of DCCs in the LUT, we first need to calculate
the failure probability of the BCH decoder and the new erede rafter decoding which are given by equations (4)
and (5). After column decoding, the probability that the Hiaimg decoder fails to correctly detect and correct all
errors does not only depend on the number of faults per eaghtnat also on the number of erroneous bits in
the output of the decoder. Therefore, the probability thgivan number of bits are erroneous in the output of the
decoder, denoted &, assuming a number of errors in the codeword has to be estimeteren is smaller or
equal to the number of bits of the decoded word. Fof & 2 LUT, the values 0P )it are shown in table I.

The failure rate of correctly decoding a row using the Hangrdecoder is obtained using the following equation:

I+ par

I:)r/ow = ZZ
K=

The total failure probability is computed as:

r

P ) Pl 1 Prew) S [P S (") 2y )"Phce] (8)
k ne new, z (n)bit mzl m CC DCC

n=1

Ptailure = 1— (1_ F)r,ow)r (9)
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number of errors in a codeword

Pnbit

2 3 4 5 6 7

P1pit 0.4306 | 0.1952 | 0.3639 | 0.1415 | O 0

Popit 0.4287 | 0.4274 | 0.4335 | 0.4271 | O 0

Papit 0.1407 | 0.3774 | 0.2026 | 0.4314 | O 0

Papit 0 0 0 0 1 1
TABLE |

HAMMING DECODER: DISTRIBUTION OF ERRONEOUS BITS IN THE OUTPUT WORB 2* x 4 LUT

Fig. 11 presents the failure rate obtained theoreticaligeld on the previously outlined equations, and using the
simulation procedure in the presence of 50% DCCs. The twphgrgerfectly match each other which validates
our theoretical predictions.

Fig. 12 shows the results obtained before and after injgci®® of Don’t Cares in 2x 4 LUTs. As can be
observed, the optimum improvement is recorded at 10% eater where the failure rate is reduced from nearly

50% to 37%.

B. Hamming with Bad Line Exclusion : Technique 2

ECCs are usually preserved for the suppression of tranfsiahs to enhance computational reliability. However,
the high defect densities in future nano-circuits [2] diesainvolving coding techniques at the initial repair ofdhar

errors to minimize the required amount of redundant regsurAs can be seen from Fig. 9, ECCs alone are not
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able to address the issue of high defect rates induced dorargfacturing. Hence it is imperative to use ECCs in
conjunction with other techniques in order to detect andemrlarger portions of physical defects (up to 20%).

To deal with higher defect rates, we have combined Hammirdg agith Bad Line Exclusion technique. This
technique requires allocating enough redundant rows fon €T to be repaired. The use of redundant wires to
tolerate physical defects was presented in [16] and [21]wilsbe shown, the amount of spare rows depends on
two main factors: the defect rate of the fabric and the sizénefLUT. Repair consists of two phases: a must-repair
phase and a final-repair phase. In the must-repair phaseeXiclusion is applied only in one dimension where the
defective rows are excluded and replaced with spare rowseihtumber of defects per row exceeds the correction
capability of Hamming. Therefore, defect counters for theltfy rows are required during the initial testing process
of the nanofabric. In the final-repair phase, the Hammingodec detects and corrects the remaining defects as
shown in Fig. 13. During the initial analysis of the fabribetbad rows are detected and their physical address is
used to create a special table to map the continuous logilthkesas to the actual physical location of defect-free
rows. Such a mapping table has to be stored in a highly-teliasemory implemented in CMOS. The physical
implementation of this logical-to-physical mapping taidebeyond the scope of this work and is not included in
the area overhead estimation of this technique in the netiose

To obtain the probability of failure, we first calculate theolpability Poy Of a row of lengthl being excluded.

Pow is equal to the probability of having more than one bad bithiat row given by:

Prow = Iz <|'(> PK(1-pP)' K (10)

K=2
wherel is the number of bits in a row including the parity bits ahds defect probability of each bit. Therefore,

the probability of failure to instantiate a LUT on the fabgiven the original number of rowmsand upper limit of
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spare rowds, can be computed as:

Psailure =

T+I’5p r r
( +k Sp) Plow(1— Prow) 7P (11)
k=rsp+1

In the case of 2x 4 LUT and 25% spare rows, equations (8) and (9) can be rewritte

Prow = i (Z) PX(1-P)7 K

k=2

16+4 /1644
Pfailure: Z k
k=4+1

Fig. 14 shows the failure rates for 4 24 LUT for different error rates in the presence of various anis of

) Prlé\N(l . Prow) 16+4—k

spare rows. As can be seen, this technique is capable ohtiolgran unprecedented percentage of defects when
compared to the Hamming alone and combined 2D coding tegarstown in Fig 9. This is demonstrated by a
failure rate of nearly 0% for up to 20% of injected faults imemdomly generated* 4 LUT.

To further our analysis, we examine the effect of variatiomimber of spare rows on the failure rate for different
LUT sizes. Fig. 15 demonstrates that as the error rate isesganore spares are needed to keep the level of fault
tolerance close to 0%. In the case Gf24 LUT for instance, only 25% of spare rows are needed i.e. &£mowrs,
to completely tolerate up to 10% of faults rates. And as morere are injected into the LUT, more spares should
be allocated and hence decreasing the useful bit densityedfabric. It can also be observed that as the LUT size
increases, the percentage of spares also increases tweathie failure rates. For example® 2 6 LUT requires
twice its original size to tolerate 20% defect rate. Howgwer can minimize such high redundancy by adopting a
more powerful ECC such as BCH instead of Hamming.

While the authors in [17] assumed 50% don't care condition€QR our results have shown remarkable
improvement in fault tolerance even with zero percent DC&she LUT implementation. However, it can be
seen from Fig. 16 that the fault tolerance of this technigusignificantly improved when we assume some of the
entries in the implementation as DCCs as compared to outtsaaurig. 14.

The existence of DCCsPfcc) in LUTs significantly reduce the bit failure rate as outtinen the following
equation:

P'=Px (1-Pocc) (12)

The new probability of a row being excluded after injectingm Cares is obtained by replacing the fault rate
P with the new fault rate®’ in equation (8) as follows:

I
Pow=Y. (L) PX(1-P)" (13)

K=2
Fig. 17 illustrates the failure rate obtained both thecoedly using equations 11 and 13 and through simulations.

As can be observed, there an identical match between the taghg indicating the correctness of our derived

mathematical equations.
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IV. IMPLEMENTATION

The realisation of fault tolerance in nano/CMOS nanoebsitrarchitecture will incur area, energy and operational

latency overhead in CMOS domain [15]. Such overhead musthemntinto account when investigating and evaluating

hybrid CMOS/nanodevice fault tolerant architectures. Tigh reliability decoders are implemented in CMOS and

May 12, 2009

DRAFT


Saket
Highlight


14

therefore incur an increase in the area and energy consumgtimpared to the denser and low energy nano-LUTS.
Additional clock cycles are also lost in decoding and cdingccodewords which cause latency overhead.

In order to obtain an estimate of the area, latency and ermugrheads per codeword, the corresponding decoders
were designed in VHDL and thoroughly tested through sintatising the appropriate test benches. Both Hamming
and BCH decoders are serial i.e. they receive 1-bit inputgererate a 1-bit output per clock cycle, therefore, the
decoding latency is proportional to the codeword lengthinggshe 0.12am CMOS standard cell library, the area
overhead of the Hamming decoder is §86 and decoding one 7-bit long codeword requires 13 clock syatel an
energy overhead of approximatelp® MHz The BCH decoder incurs higher overhead due to its high cexitgl
an area overhead of 91327, a latency of 69 clock cycles and an energy overhead op28@Hz However, this
need to be further studied in the context of optimum desigatesyy where we negotiate the advantage of higher
density and low power dissipation against increased delayhead.

The CMOS components as well as the redundant parity bits pack sows in our techniques will reduce the
useful bit density offered by nanodevices. Therefore, lagrotesign parameter callegtea per useful bitratio is
used to compare the efficiency of the various techniquesa Awer useful bit(a) reflects the area necessary to
achieve certain useful bit capacity and is obtained by digdhe total area of the fabric by the number of useful
bits in the LUT.

The total area of the fabric comprises of the area of nanodevand that of CMOS subsystems. We adopt a
model presented in [14] to estimate the area of nanoscaleomyefBach bank in the memory is composed of a set
of crossed nanoscale wires supported by a set of interfacesaiale wires. For a nano-circuit of thputs andm

outputs, the area can be estimated as shown in [17]:

A= (\Mith (n+logzm) +Wnan02n) . (With n+ m\/\ﬁanozn) (14)

The main parameters in the model are the number of rdwan® columnam. The area of the nano-memory is
dominated by the address lines which are microwivéigy, = 105nm is the wire pitch of the lithographic address
wires andWhano= 10nmis the pitch for the nanoscale wires. For instance, in the cdsa 2 x 4 LUT, the area of
the nano-LUT before encoding is8unt.

Technique Total Area | Area/Useful
(un?) bit (un?/bit)
Hamming alone [17] 907 14
BCH alone [13] 9133 142
Hamming & Bad Line Excl.| 908 14
(proposed)
TABLE Il

AREA/USEFUL BIT OF THE PROPOSED TECHNIQUES
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Table Il compares the area overhead of the proposed teahnigfh the earlier approaches. While we have
seen that Hamming in combination with bad line exclusionieas much better failure rates as compared to error
correcting schemes such as Hamming or BCH, this improvemeatlure rate is achieved with little or no increase
in area overhead when compared with the simplest corretdidmique proposed in [17]. It should be noted that
BCH has the highest area overhead due to the complexity afeit®ding circuitry. Table Il also shows the area
per useful bit ratio for a 2x 4 LUT implemented using the three techniques.

While significant area improvement can be achieved over otii@OS for high density fabrics using hybrid
nano/CMOS architecture [13], it can be shown that furtheprimmement in terms of useful bit density can be
achieved by sharing the decoders by multiple LUTs using timtiplexing strategy as outlined in [17]. Another
way to minimise the CMOS area overhead is to synthesisedbgircuits into smaller LUTs because the size of the
decoder increases proportionally with the size of the LUBrébver, as shown in the experimental results (Fig. 10

and Fig. 15), using smaller LUTs allows achieving higheels\of fault tolerance at the cost of low area overhead.

V. CONCLUSION

In this paper we investigated a promising look-up table Baseplementation of Boolean logic functions in
heterogeneous CMOS/nanodevice architectures. Our stigliewed that single error correcting codes such as
Hamming or BCH prove their insufficiency in tolerating higtrar rates. We presented two hybrid fault-tolerance
techniques that address faults caused due to physicaltslefied transient faults. In the first technique, we encoded
both rows and columns of LUTs (using Hamming and BCH codegemtvely) to target higher number of faults.
This technique significantly improves the fault tolerandéhwespect to single error correction schemes for error
rates greater than 5%. In the second technique, we comptethelamming with bad line exclusion. This technique
results in remarkable improvement of failure rate againstibstantial fraction of bad nanodevices (up to 20%).
This is achieved at the cost of minimal increase in area @agttcompared with Hamming, yet with much higher
efficiency in tolerating errors. Based on our studies ththméque is very effective for LUT-based Boolean logic
architectures. We have also shown that the presence of darét conditions in LUTs can significantly improve
circuit failure rates when we combine coding with bad linelegion. Finally, we investigated the impact of these
techniques in terms of area, latency and energy overhealshamved that improved fault tolerance can be achieved

using the proposed techniques with little overheads coetptr previous coding techniques.
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VII. RESPONSE TO THEREVIEWERS

We would like to thank you all for spending your valuable timeconducting the review of our manuscript. We

also thank you for your valuable and constructive suggestto enhance the quality of this paper.

A. Detailed Response

1) Comments from Reviewer 1: This paper addresses an impddgic related to the problem of fault tolerance
in high-density digital electronic circuits. The main rétsurelated to the error-correction and bad line exclusion
techniques seem to be valid, but the beginning of the papereisented in a confusing way.

« It starts with the title, which mentions an architecture ofree sort. Nanoelectronics (so far) does not belong to
the mainstream VLSI design, so one would expect to see atidefiof the object under test in the introduction
to the paper, but there is only a reference to [17].

Our Response: To clarify this, a short description of thgated CMOS/Nano architecture is included in the
introduction (page 2, first three sentences starting withe’prohibitively low... critical circuit operations”). We
have also added the definition of the object under test (WkittJTs) in the introduction (page 2, paragraph 3,
sentences 4-5). Another reference (ref. [19]) was alsoatiwéurther explain how the highly dense nanoscale
fabric can be used to implement Boolean logic circuits ag-lop tables.

« The reference architecture is based on CMOS/carbon naestidibric, but the latter are not mentioned in the
paper under review.

Our Response: In this work, the targeted nanofabric is t@dgy-independent. In [17], the authors targeted
CMOS/CNT fabric, whereas our proposed techniques are wedifpr nanoscale devices in general. This has
been clarified in the introduction section (page 2, pardg@&psentence 2).

« It is unclear whether the architecture in question is Figurfrom [17] (includes CFO..3, MUX, DEMUX,
Scheduler, Decoder, FF-s) or a way the CNT combinationatldgpcks (CFO0..3) are mapped into the matrices.
The further discussion is focused on the matrices alone.

Our Response: To clarify the architecture in question, weehiatroduced a new figure called "Hybrid
Nano/CMOS Architecture Overview” (see Fig. 1). A descoptiof how the LUTs are constructed using
matrices is included in the introduction (page 2, paragrapsentence 5).

« Section 3 describes the proposed techniques. Only in thiBoseit becomes clear how the matrices are
constructed. This should be done in the introduction, whieeeobject under test is defined.

Our Response: We thank the reviewer for pointing this out.nHake clarified this in the introduction (page 2,
paragraph 3, sentence 5).

« It is unclear why the diagrams in Figures 7..11 do not showdhse of a large LUT, as in Section 2.

Our Response: We have now ensured consistency throughepaper by using LUTs of sizes of upt6 26
when evaluating the proposed techniques in Fig. 3, Fig. TDRg. 15.
« In Section 4 time, energy and area overheads caused by tharlelecare calculated. The encoders are not

mentioned probably because they are not shown in Figure 17%h [The other parts of the reference architecture
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are also not mentioned.
Our Response: The reviewer is right, the encoders are nhbtdied in the overhead estimations because they
are not included in our targeted architecture (please sgellfi The reason is that they are not included in
the final layout of the circuit. After partitioning the logaircuit into N small LUTs (CFO.N), the encoder is
used to encode their data entries (offline) before beingewito the nanofabric.

« The overheads are given as absolute values and not compaurta thanotube implementation of the combi-
national logic blocks.
Our Response: To clarify this, we have added a statementrtpae the area of nano-LUT with the area
of the CMOS decoders in (page 11, section ...). Moreoveratgu 14 can be used to estimate the area of
nano-LUTSs.

« Minor faults: the second sentence in the abstract is confysinake it clear that the references in the first
paragraph are specific to nanotechnology.
Our Response: The second sentence of the abstract has béssu.re

« To summarise the paper can be improved by expanding thedinttion and by making it clear that the main
idea is to deal with LUTs, the latter aspect being technolimgiependent.
Our Response: We thank the reviewer for his/her suggesfierhave made it clear in the introduction (page 2,
paragraph 3, sentence 8) that the main idea is to toleralis fal.UTs. We have also added another sentence
in the introduction (page 2, paragraph 3, sentence 2) tdigighthe fact that the targeted nanoscale fabric is

technology-independent.

2) Comments from Reviewer 2: The use of error correcting €adémprove circuit reliability is not new. The
work is incremental, but interesting, as it tests a few cogled strategies. The work is nicely presented, however

it needs to clarify some points.

« The use of crossbar type circuits have been discussed adbnby K. Lkharev, whose work is not discussed
properly in the paper, except for ref. [16]

Our Response: We thank the reviewer for pointing this out.H&%e cited ref.[16] in the introduction section
(page 2, paragraph 2, sentence 7).

« The paper assumes a uniform defect distribution to apply reor €orrecting code to make the circuit more
robust. This is of limited application in the scenario withosger correlated defects, which is not considered
in equation 1. This should be made clear in the text.

Our Response: The reviewer is right to emphasise on the tiypear distribution considered in our simulation
and theoretical analysis. Because our targeted fabricclintdogy-independent, we can not model accurately
the distribution of correlated defects without targetingaaticular technology. We also believe that random
distribution of faults represent the worst case scenarib@nce the lower bound of the targeted fault rates.
This has been explicitly clarified in the Primitives sect{page 3, paragraph 3, sentence 5) that the simulations

are based on randomly distributed errors.
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« In Figure 1, the plot labels says theoretical and simulatiarhile the caption states theoretical and experi-
mentall The authors mixes up experiment with simulatiomugition is not experiment.

Our Response: We thank the reviewer for pointing this out.cAptions have been rewritten.

« VHDL can only confirm the authors claim, as it does not graspeatations of the nano world. In this sense

this work is not specific for nanocircuits, it could be usedday circuit.
Our Response: We agree with the reviewer that VHDL is a higlellelescription language and hence is
not suitable for modeling nanocircuits. However, since vagehpresented a system-level model for a hybrid
CMOS/Nano architecture, we use C++ estimate the faultdolsr exhibited by various techniques. VHDL is
only used to present an estimate of CMOS area, latency andyeoeerheads.

« As the error rate increases, there is an increase in area [igrta include the parity bits. Considering the
area overhead, is it profitable to make nanosize circuits?

Our Response: Fault tolerance incurs area overhead thnaaymdancy. We believe that the proposed fault
tolerance techniques have moderate area overhead cogigge€lO, section 4, paragraph 2 and table 2) and
effective in tolerating high error rates (see Fig. 9 and Ei).

« For a given failure rate, what is the minimum bit area withauty code, and the minimum area with code. Is
there a gain?

Our Response: We are unclear about this question. Tableolliges information abouarea/useful bitratio
for the various techniques in the case 6624 LUT. We note here that the proposed techniques only achieve
a gain in terms of reliability at the cost of increased areerlogad.

3) Comments from Reviewer 3: The paper presents two faeltatal schemes for reliability. In the first scheme,
two-dimensional coding using Hamming and BCH codes are.usethe second, Hamming codes are combined
with a bad line exclusion technique. Here are some commenthé authors to improve the paper. ..

« Use of 2-D codes and spare units is not completely novel {geg.ve been used in fault tolerant memories).

The authors need to show how their approach is different amdpare with previous related work.

Our Response: We agree with the reviewer that coding schansepair techniques that are based on spare
units have already been used in memory designs. Howevehnetbest of our knowledge, there are no other
reported work targeting fault tolerance in CMOS/Nano LUaBed architecture which is the focus of this
work. More importantly, the existence of don’t care coratis in LUTS helps increase the efficiency of these
techniques in building highly reliable systems at a redunest which is a key contribution of this paper (see
Fig. 16).

« Moreover, the purpose for these proposed techniques is leat. dn the introduction section (page 2), you
will address the permanent and transient faults. Howewethe conclusion section (page 14), you switch the
target into faults introduced during manufacturing prosgsvhich are more likely permanent errors. Please
clarify this.

Our Response: We have ensured consistency between thduatiem and conclusion. The conclusion have
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been revised taking into account that both physical andsiean faults are addressed in this paper (page 15,
Conclusion section, sentence 3).

« One of the main problems in this paper is unfair comparisdfs. example, in Fig. 4, Fig. 7 and Fig. 8,
neither the information bit width nor code rate of the congzhrodes is equal. Please modify the experiment
to show how to compare them in a fair way?

Our Response: The reviewer is correct to point out that tfi@rnmation bit width and the code rate of the
compared codes are not equal. However, in Figs 5 and 9, theugacoding schemes are compared in terms
of their ability in detecting and correcting defective bitghile all the various coding schemes target the same
LUT size (Z x4 in Fig. 5 and 9), this difference between them in the infdiamabit width and code rate

is due to the direction of coding as well as the number of pdrits associated with the code (which can
be termed as the cost of correction). While the comparisonbeatermed as unfair, it highlights the cost of
correction to achieve higher levels of reliability.

« Another problem is missing very important experimentalitss The technique 1, i.e. 2D error coding, has
not been well evaluated, although you provide some lateneyyais, absolute value for Hamming and BCH
codec area and energy. There is no comparison to to othetimxiselated approach, e.g. Ref. 17.

Our Response: We believe that we have adequately evaluse2Dt coding technique. In Fig. 9, we compared
the level of reliability achieved by this technique with §heeviously proposed techniques. We also investigated
the impact the varying the LUT size on its failure rate (seg BED). This is in addition to the estimated area,
latency and energy overheads in section 4 (page 14, patag@jaBecause this technique uses both Hamming
and BCH decoders, its area, latency and energy overheatiseasam of the overheads of both Hamming( [17])
and BCH ( [13]) decoders.

« Because you add too much redundancy on the information (yode rate is 16/(7*31)), how could you win
in terms of area and energy?

Our Response: It is correct that more redundancy is addediedzling technique (code rate of 16/(7*31))
as compared to Hamming. Because the aim is to target highar rates in the nanofabric (see Fig. 9), extra
parity bits and stronger decoders are needed to achieveisymbvement. Therefore, this improvement in
circuit's yield and reliability is obtained at the cost of recarea and energy overheads. This has been clarified
in (page 9, section 3(A), paragraph 1, last sentence). Merethe redundancy overhead, due to encoding
in both dimensions, is exploited efficiently to improve tlaegeted error rate. As shown in Fig. 5, coding in
one dimension is incapable of improving the targeted faatk even if stronger coding schemes are used. For
instance, although the padding technique adds more redtibda (code rate of 16/(15*16)) than 2D coding
approach (code rate of 16/(7*31)), this technique is un&bi®lerate error rates higher than 1% as shown in
Fig. 5.

« In addition, the experiment results for technique 2 are aisb complete. You only provide the area number.
How about the energy?

Our Response: We have provided energy values for CMOS Hagdgooder in (page 14, section 4, paragraph
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2). The energy overhead in nanoscale domain has not beemdé@ttlbecause our targeted nanofabric is
technology-independent.

« Plus, the total area for the proposed method is doubtablevidould that be possible that you only introduce
1 unt overhead than Hamming code? It is difficult to comprehend timvuse of Hamming codes with bad
line exclusion can have almost the same area as Hamming @des (Table 2).

Our Response: As mentioned in section 4, the area of thecfalrnprises of the area of the nanodevices
and that of CMOS subsystems (page 14, paragraph 3, sentgné@del difference between Hamming [17]

and the proposed Hamming and Bad Line Exclusion techniquedsnumber of spare rows allocated for
repair. Assuming a 100% redundancy, the total area addelet@riginal LUT area and Hamming decoder
area is equal to 0.84r? and hence an increase of approximatglyr. in total area with respect to Hamming

technique. This represents0.1% of the total area.

« Do the authors include the area overhead of mapping low rowresk to the physical row address in the
proposed method? Please address that.

Our Response: We have not included the area overhead of nggfgical row address to the physical row
address in the physical implementation. We have mentiohiadin section 3(B) (page 11, paragraph 2, last
sentence).

« The description for encoding and decoding process is in¢éet@pYou briefly mention multiple-step decoding
process in page 6. Please provide more details in flow chaalgorithm description, as well as the explanation
for why you perform BCH decoding first and Hamming decodingrla
Our Response: We have added a new flow chart (see Fig. 7) toilme$ow the output is read from the
encoded LUT, as requested by the reviewer. We have alsodedla small paragraph in section 3(A) (page
6, paragraph 1, sentences 4-7) to explain how the data iswedr from the encoded LUT and why the BCH
decoding is performed first.

« The description for spare wire-related work in techniques2riissing as well. Do you add spare wire on row
or on column, how do you decide on the optimal number for tlaeespires, etc?

Our Response: In technique 2, redundancy is added row-&ipeations 10 and 11 can be used to evaluate
the optimal number of spare rowsy, to tolerate a given defect raR and LUT size.

« Missing references: Product code is a 2D code, please refe¢hat.

Our Response: We have added a referenceraduct codetechnique in section 3(A) (page 6, paragraph 1,
sentence 1).

« Missing references: Using spare wire to tolerate permarmgrdr has been addressed in Lehtonen, T., Liljeberg,
P., and Plosila, J.: Online reconfigurable self-timed linfles fault tolerant NoC, VLSI Design, 2007, Article
ID 94676, p. 13
Our Response: We have added the paper mentioned above tistoof leferences and to section 3.2 (page

11, paragraph 2, sentence 3).

Equation (5) is confusing. Why is the new defect probabiliey product of the residual error rate of BCH
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codes and the original defect probability?

Our Response: We have revised the sentence that precedatfoadh (page 8, last 2 lines) to clarify this.
Assuming a uniform distribution of errors in the LUT, afteCB decoding of columns, the probability that
any bit in a column remains erroneous is equal to the produtiteoprobability of the bit being erroneod’s
and the probability that the BCH decoder fails to correct litich is P
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