1,251 research outputs found
The Bright Side of Being Uncertain: The Impact of Economic Policy Uncertainty on Corporate Innovation
Purpose: This study aims to theoretically hypothesize and empirically examine the impact of economic policy uncertainty (EPU) on firms' innovation performance as well as the contingency conditions of this relationship. Design/methodology/approach: This study collects and combines secondary longitudinal data from multiple sources to test for a direct impact of EPU on firms' innovation performance. It further examines the moderating effects of firms' operational and marketing capabilities. A series of robustness checks are performed to ensure the consistency of the findings. Findings: In contrast to the common belief that EPU reduces the innovativeness of firms, the authors find an inverted-U relationship between EPU and innovation performance, indicating that a moderate level of EPU actually promotes innovation. Further analysis suggests that firms' operational and marketing capabilities make the inverted-U relationship steeper, further enhancing firms' innovation performance at a moderate level of EPU. Originality/value: This study adds to the emerging literature that investigates the operational implications of EPU, which enhances our understanding of the potential bright side of EPU and broadens the scope of operational risk management.</p
Rate-equation approach to atomic-laser light statistics
We consider three- and four-level atomic lasers that are either incoherently
(unidirectionally) or coherently (bidirectionally) pumped, the single-mode
cavity being resonant with the laser transition. The intra-cavity Fano factor
and the photo-current spectral density are evaluated on the basis of rate
equations.
According to that approach, fluctuations are caused by jumps in active and
detecting atoms. The algebra is considerably simpler than the one required by
Quantum-Optics treatments.
Whenever a comparison can be made, the expressions obtained coincide. The
conditions under which the output light exhibits sub-Poissonian statistics are
considered in detail. Analytical results, based on linearization, are verified
by comparison with Monte Carlo simulations. An essentially exhaustive
investigation of sub-Poissonian light generation by three- and four-level atoms
lasers has been performed. Only special forms were reported earlier.Comment: 9 pages, 7 figures, RevTeX
In-plane magnetic reorientation in coupled ferro- and antiferromagnetic thin films
By studying coupled ferro- (FM) and antiferromagnetic (AFM) thin film
systems, we obtain an in-plane magnetic reorientation as a function of
temperature and FM film thickness. The interlayer exchange coupling causes a
uniaxial anisotropy, which may compete with the intrinsic anisotropy of the FM
film. Depending on the latter the total in-plane anisotropy of the FM film is
either enhanced or reduced. Eventually a change of sign occurs, resulting in an
in-plane magnetic reorientation between a collinear and an orthogonal magnetic
arrangement of the two subsystems. A canted magnetic arrangement may occur,
mediating between these two extremes. By measuring the anisotropy below and
above the N\'eel temperature the interlayer exchange coupling can be
determined. The calculations have been performed with a Heisenberg-like
Hamiltonian by application of a two-spin mean-field theory.Comment: 4 pages, 4 figure
W Boson Inclusive Decays to Quarkonium at the LHC
In this paper, the production rates of quarkonia eta_c, J/psi, eta_b,
Upsilon, B_c and B_c^* through W boson decay at the LHC are calculated, at the
leading order in both the QCD coupling constant and in v, the typical velocity
of the heavy quark inside of mesons. It shows that a sizable number of
quarkonia from W boson decay will be produced at the LHC. Comparison with the
predictions by using quark fragmentation mechanism is also discussed. Results
show that, for the charmonium production through W decay, the difference
between predictions by the fragmentation mechanism and complete leading order
calculation is around 3%, and it is insensitive to the uncertainties of
theoretical parameters; however, for the bottomonium and B_c^(*) productions,
the difference cannot be ignored as the fragmentation mechanism is less
applicable here due to the relatively large ratio mb/mw.Comment: Updated to match the published version in EPJ
Interface and electronic characterization of thin epitaxial Co3O4 films
The interface and electronic structure of thin (~20-74 nm) Co3O4(110)
epitaxial films grown by oxygen-assisted molecular beam epitaxy on MgAl2O4(110)
single crystal substrates have been investigated by means of real and
reciprocal space techniques. As-grown film surfaces are found to be relatively
disordered and exhibit an oblique low energy electron diffraction (LEED)
pattern associated with the O-rich CoO2 bulk termination of the (110) surface.
Interface and bulk film structure are found to improve significantly with
post-growth annealing at 820 K in air and display sharp rectangular LEED
patterns, suggesting a surface stoichiometry of the alternative Co2O2 bulk
termination of the (110) surface. Non-contact atomic force microscopy
demonstrates the presence of wide terraces separated by atomic steps in the
annealed films that are not present in the as-grown structures; the step height
of ~ 2.7 A corresponds to two atomic layers and confirms a single termination
for the annealed films, consistent with the LEED results. A model of the (1 *
1) surfaces that allows for compensation of the polar surfaces is presented.Comment: 8 pages, 7 figure
Geometric Entanglement of Symmetric States and the Majorana Representation
Permutation-symmetric quantum states appear in a variety of physical
situations, and they have been proposed for quantum information tasks. This
article builds upon the results of [New J. Phys. 12, 073025 (2010)], where the
maximally entangled symmetric states of up to twelve qubits were explored, and
their amount of geometric entanglement determined by numeric and analytic
means. For this the Majorana representation, a generalization of the Bloch
sphere representation, can be employed to represent symmetric n qubit states by
n points on the surface of a unit sphere. Symmetries of this point distribution
simplify the determination of the entanglement, and enable the study of quantum
states in novel ways. Here it is shown that the duality relationship of
Platonic solids has a counterpart in the Majorana representation, and that in
general maximally entangled symmetric states neither correspond to anticoherent
spin states nor to spherical designs. The usability of symmetric states as
resources for measurement-based quantum computing is also discussed.Comment: 10 pages, 8 figures; submitted to Lecture Notes in Computer Science
(LNCS
Azimuthal asymmetries in lepton-pair production at a fixed-target experiment using the LHC beams (AFTER)
A multi-purpose fixed-target experiment using the proton and lead-ion beams
of the LHC was recently proposed by Brodsky, Fleuret, Hadjidakis and Lansberg,
and here we concentrate our study on some issues related to the spin physics
part of this project (referred to as AFTER). We study the nucleon spin
structure through and processes with a fixed-target experiment using
the LHC proton beams, for the kinematical region with 7 TeV proton beams at the
energy in center-of-mass frame of two nucleons GeV. We calculate
and estimate the azimuthal asymmetries of unpolarized and
dilepton production processes in the Drell--Yan continuum region and at the
-pole. We also calculate the , and
azimuthal asymmetries of and dilepton production
processes with the target proton and deuteron longitudinally or transversally
polarized in the Drell--Yan continuum region and around resonances region.
We conclude that it is feasible to measure these azimuthal asymmetries,
consequently the three-dimensional or transverse momentum dependent parton
distribution functions (3dPDFs or TMDs), at this new AFTER facility.Comment: 15 pages, 40 figures. Version accepted for publication in EPJ
A new permanent, low-cost, low-power SO2 camera for continuous measurement of volcanic emissions
Since its introduction to volcanology in the mid-2000 s, the SO2 camera has become an important instrument for the acquisition of accurate and high time-resolution SO2 emission rates, aiding in hazard assessment and volcanological research. However, with the exception of a few locations (Stromboli, Etna, Kīlauea), hitherto the majority of measurements have been made on discrete field campaigns, which provide only brief snapshots into a volcano’s activity. Here, we present the development of a new, low-cost, low-power SO2 camera for permanent deployment on volcanoes, facilitating long-term, quasi-continuous (daylight hours only) measurements. We then discuss preliminary datasets from Lascar and Kīlauea volcanoes, where instruments are now in continuous operation. Further proliferation of such instrumentation has the potential to greatly improve our understanding of the transient nature of volcanic activity, as well as aiding volcano monitoring/eruption forecasting
Three-dimensional random Voronoi tessellations: From cubic crystal lattices to Poisson point processes
We perturb the SC, BCC, and FCC crystal structures with a spatial Gaussian noise whose adimensional strength is controlled by the parameter a, and analyze the topological and metrical properties of the resulting Voronoi Tessellations (VT). The topological properties of the VT of the SC and FCC crystals are unstable with respect to the introduction of noise, because the corresponding polyhedra are geometrically degenerate, whereas the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. For weak noise, the mean area of the perturbed BCC and FCC crystals VT increases quadratically with a. In the case of perturbed SCC crystals, there is an optimal amount of noise that minimizes the mean area of the cells. Already for a moderate noise (a>0.5), the properties of the three perturbed VT are indistinguishable, and for intense noise (a>2), results converge to the Poisson-VT limit. Notably, 2-parameter gamma distributions are an excellent model for the empirical of of all considered properties. The VT of the perturbed BCC and FCC structures are local maxima for the isoperimetric quotient, which measures the degre of sphericity of the cells, among space filling VT. In the BCC case, this suggests a weaker form of the recentluy disproved Kelvin conjecture. Due to the fluctuations of the shape of the cells, anomalous scalings with exponents >3/2 is observed between the area and the volumes of the cells, and, except for the FCC case, also for a->0. In the Poisson-VT limit, the exponent is about 1.67. As the number of faces is positively correlated with the sphericity of the cells, the anomalous scaling is heavily reduced when we perform powerlaw fits separately on cells with a specific number of faces
Instability, Intermixing and Electronic Structure at the Epitaxial LaAlO3/SrTiO3(001) Heterojunction
The question of stability against diffusional mixing at the prototypical
LaAlO3/SrTiO3(001) interface is explored using a multi-faceted experimental and
theoretical approach. We combine analytical methods with a range of
sensitivities to elemental concentrations and spatial separations to
investigate interfaces grown using on-axis pulsed laser deposition. We also
employ computational modeling based on the density function theory as well as
classical force fields to explore the energetic stability of a wide variety of
intermixed atomic configurations relative to the idealized, atomically abrupt
model. Statistical analysis of the calculated energies for the various
configurations is used to elucidate the relative thermodynamic stability of
intermixed and abrupt configurations. We find that on both experimental and
theoretical fronts, the tendency toward intermixing is very strong. We have
also measured and calculated key electronic properties such as the presence of
electric fields and the value of the valence band discontinuity at the
interface. We find no measurable electric field in either the LaAlO3 or SrTiO3,
and that the valence band offset is near zero, partitioning the band
discontinuity almost entirely to the conduction band edge. Moreover, we find
that it is not possible to account for these electronic properties
theoretically without including extensive intermixing in our physical model of
the interface. The atomic configurations which give the greatest electrostatic
stability are those that eliminate the interface dipole by intermixing, calling
into question the conventional explanation for conductivity at this interface -
electronic reconstruction. Rather, evidence is presented for La indiffusion and
doping of the SrTiO3 below the interface as being the cause of the observed
conductivity
- …