537 research outputs found
Coulomb drag as a signature of the paired quantum Hall state
Motivated by the recent Coulomb drag experiment of M. P. Lilly et. al, we
study the Coulomb drag in a two-layer system with Landau level filling factor
. We find that the drag conductivity in the incompressible paired
quantum Hall state at zero temperature can be finite. The drag conductivity is
also greatly enhanced above , at which the transition between the weakly
coupled compressible liquids and the paired quantum Hall liquid takes place. We
discuss the implications of our results for the recent experiment.Comment: 4 pages, 1 figure included, replaced by the published versio
Measuring geometric phases of scattering states in nanoscale electronic devices
We show how a new quantum property, a geometric phase, associated with
scattering states can be exhibited in nanoscale electronic devices. We propose
an experiment to use interference to directly measure the effect of the new
geometric phase. The setup involves a double path interferometer, adapted from
that used to measure the phase evolution of electrons as they traverse a
quantum dot (QD). Gate voltages on the QD could be varied cyclically and
adiabatically, in a manner similar to that used to observe quantum adiabatic
charge pumping. The interference due to the geometric phase results in
oscillations in the current collected in the drain when a small bias across the
device is applied. We illustrate the effect with examples of geometric phases
resulting from both Abelian and non-Abelian gauge potentials.Comment: Six pages two figure
Association of delays in surgery for melanoma with insurance type
IMPORTANCE: Timely receipt of treatment for cancer is an important aspect of health care quality. It is unknown how delays of surgery for melanoma vary by insurance type. OBJECTIVE: To analyze factors associated with delays between diagnosis and surgery for melanoma in patients with Medicare, Medicaid, or private insurance. DESIGN, SETTING, AND PARTICIPANTS: Retrospective cohort study of patients who received a diagnosis of melanoma between 2004 and 2011 in North Carolina using data from the North Carolina Cancer Registry linked to administrative claims from Medicare, Medicaid, and private insurance. Inclusion criteria were incident patients with a diagnosis of melanoma stage 0 to III and with continuous insurance enrollment from at least 1 month prior to the month of diagnosis to 12 months after diagnosis of melanoma. MAIN OUTCOMES AND MEASURES: Surgical delay, defined as definitive surgical excision occurring more than 6 weeks after melanoma diagnosis. Generalized linear models with log link, Poisson distributions, and robust standard errors were used to estimate adjusted risk ratios (RRs) to model risk of delay in definitive surgery. RESULTS: A total of 7629 patients were included (4210 [55%] female; mean [SD] age, 64 [15] years), 48% (n = 3631) Medicare, 48% (n = 3667) privately insured, and 4% (n = 331) Medicaid patients. Privately insured patients were least likely to experience a delay in definitive surgery, followed by Medicare and Medicaid patients (519 [14%], 609 [17%], and 79 [24%], respectively; P < .001). After demographic adjustment, the risk of surgical delay was significantly increased in patients with Medicaid compared with private insurance (RR, 1.36; 95% CI, 1.09-1.70). Delays were more likely in nonwhite patients (RR, 1.38; 95% CI, 1.02-1.87). Surgical delays were less likely if the physician performing the surgery (RR, 0.82; 95% CI, 0.72-0.93) or the diagnosing clinician (RR, 0.81; 95% CI, 0.71-0.93) was a dermatologist as compared with a nondermatologist. CONCLUSION AND RELEVANCE: Surgical treatment delays were common but were less prevalent in patients diagnosed or surgically treated by a dermatologist. Medicaid patients experienced the most surgical delays. A reduction in delays in melanoma surgery could be achieved through better access to specialty care and cross-disciplinary coordination
Effects of Exogenous Cellulase Source on In Vitro Fermentation Characteristics and Methane Production of Crop Straws and Grasses
In vitro fermentation experiments were conducted to investigate the effects of 3 sources of
exogenous cellulase products (EC) at 4 dose rates (DR) (0, 12, 37 and 62 IU/g of DM) on degradation
of forage and methane production by mixed rumen micro-organisms of goats. The maximum gas
production (Vf) of grasses was higher (P<0.001) in Neocallimastix patriciarum (NP) group than those in
Trichoderma reesei (TR) and Trichoderma longibrachiatum (TL) groups. Quadratic increases in dry
matter degradation (DMD) of forage and neutral detergent fiber (NDFD) of straw were observed for all
EC, with optimum DR in the low range. Supplementation of EC originated from TR and NP increased
(P<0.001) DMD of forage compared to that from TL. Addition of EC originated from TR and NP also
decreased pH value, ammonia nitrogen (NH3-N) and methane (CH4) production compared to that from
TL. Quadratic decreases in pH value, NH3-N and CH4 of forage were noted for EC of TR and NP, and
with optimum DR in the low range. For short chain fatty acid, the EC of NP increased total volatile
fatty acid (TVFA) and acetate concentration and the ratio of acetate to propionate of forage compared
with EC of TL and TR, and with optimum DR in the low to medium range. It was concluded that the
source of EC differed in fiber degradation and methane emission, and with optimum DR of TR in the
low range (from 12 to 37 U/g DM) in improving fiber degradation and decreasing methane emission
Double-Layer Systems at Zero Magnetic Field
We investigate theoretically the effects of intralayer and interlayer
exchange in biased double-layer electron and hole systems, in the absence of a
magnetic field. We use a variational Hartree-Fock-like approximation to analyze
the effects of layer separation, layer density, tunneling, and applied gate
voltages on the layer densities and on interlayer phase coherence. In agreement
with earlier work, we find that for very small layer separations and low layer
densities, an interlayer-correlated ground state possessing spontaneous
interlayer coherence (SILC) is obtained, even in the absence of interlayer
tunneling. In contrast to earlier work, we find that as a function of total
density, there exist four, rather than three, distinct noncrystalline phases
for balanced double-layer systems without interlayer tunneling. The newly
identified phase exists for a narrow range of densities and has three
components and slightly unequal layer densities, with one layer being spin
polarized, and the other unpolarized. An additional two-component phase is also
possible in the presence of sufficiently strong bias or tunneling. The
lowest-density SILC phase is the fully spin- and pseudospin-polarized
``one-component'' phase discussed by Zheng {\it et al.} [Phys. Rev. B {\bf 55},
4506 (1997)]. We argue that this phase will produce a finite interlayer Coulomb
drag at zero temperature due to the SILC. We calculate the particle densities
in each layer as a function of the gate voltage and total particle density, and
find that interlayer exchange can reduce or prevent abrupt transfers of charge
between the two layers. We also calculate the effect of interlayer exchange on
the interlayer capacitance.Comment: 35 pages, 19 figures included. To appear in PR
Airway cells from atopic asthmatic patients exposed to ozone display an enhanced innate immune gene profile
This study identifies transcriptional phenotypes of sputum samples from normal volunteers and atopic asthmatics exposed to ozone. Network analyses suggest that asthmatics elevate immune signaling following oxidative stress, while nonasthmatics attempt to mitigate the ozone-induced response
Role of Neuroepithelial Sonic hedgehog in Hypothalamic Patterning
The hypothalamus is a region of the diencephalon with particularly complex patterning. Sonic hedgehog (Shh), encoding a protein with key developmental roles, shows a peculiar and dynamic diencephalic expression pattern. Here, we use transgenic strategies and in vitro experiments to test the hypothesis that Shh expressed in the diencephalic neuroepithelium (neural Shh) coordinates tissue growth and patterning in the hypothalamus. Our results show that neural Shh coordinates anteroposterior and dorsoventral patterning in the hypothalamus and in the diencephalon-telencephalon junction. Neural Shh also coordinates mediolateral hypothalamic patterning, since it is necessary for the lateral hypothalamus to attain proper size and is required for the specification of hypocretin/orexin cells. Finally, neural Shh is necessary to maintain expression of differentiation markers including survival factor Foxb1
c-Axis Transport and Resistivity Anisotropy of Lightly- to Moderately-Doped La_{2-x}Sr_{x}CuO_{4} Single Crystals: Implications on the Charge Transport Mechanism
Both the in-plane and the out-of-plane resistivities (\rho_{ab} and \rho_{c})
are measured in high-quality La_{2-x}Sr_{x}CuO_{4} (LSCO) single crystals in
the lightly- to moderately-doped region, x = 0.01 to 0.10, and the resistivity
anisotropy is determined. In all the samples studied, the anisotropy ratio \rho
_{c}/\rho_{ab} quickly increases with decreasing temperature, although in
non-superconducting samples the strong localization effect causes \rho
_{c}/\rho_{ab} to decrease at low temperatures. Most notably, it is found that
\rho_{c}/\rho_{ab} at moderate temperatures (100 - 300 K) is almost completely
independent of doping in the non-superconducting regime (x = 0.01 to 0.05);
this indicates that the same charge confinement mechanism that renormalizes the
c-axis hopping rate is at work down to x = 0.01. It is discussed that this
striking x-independence of \rho_{c}/\rho_{ab} is consistent with the idea that
holes form a self-organized network of hole-rich regions, which also explains
the unusually metallic in-plane transport of the holes in the lightly-doped
region. Furthermore, the data for x > 0.05 suggest that the emergence of the
superconductivity is related to an increase in the c-axis coupling.Comment: 7 pages, 5 figures, submitted to Phys. Rev.
Classical Yang-Mills Black hole hair in anti-de Sitter space
The properties of hairy black holes in EinsteinâYangâMills (EYM) theory are reviewed, focusing on spherically symmetric solutions. In particular, in asymptotically anti-de Sitter space (adS) stable black hole hair is known to exist for frak su(2) EYM. We review recent work in which it is shown that stable hair also exists in frak su(N) EYM for arbitrary N, so that there is no upper limit on how much stable hair a black hole in adS can possess
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
- âŠ