56 research outputs found

    An Unconventional Glutamatergic Circuit in the Retina Formed by vGluT3 Amacrine Cells

    Get PDF
    SummaryIn the vertebrate retina, glutamate is traditionally thought to be released only by photoreceptors and bipolar cells to transmit visual signals radially along parallel ON and OFF channels. Lateral interactions in the inner retina are mediated by amacrine cells, which are thought to be inhibitory neurons. Here, we report calcium-dependent glutamate release from vGluT3-expressing amacrine cells (GACs) in the mouse retina. GACs provide an excitatory glutamatergic input to ON-OFF and ON direction-selective ganglion cells (DSGCs) and a subpopulation of W3 ganglion cells, but not to starburst amacrine cells. GACs receive excitatory inputs from both ON and OFF channels, generate ON-OFF light responses with a medium-center, wide-surround receptive field structure, and directly regulate ganglion cell activity. The results reveal a functional glutamatergic circuit that mediates noncanonical excitatory interactions in the retina and probably plays a role in generating ON-OFF responses, crossover excitation, and lateral excitation

    DNAzyme Hybridization, Cleavage, Degradation and Sensing in Undiluted Human Blood Serum

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Analytical Chemistry, copyright © American Chemical Society after peer review and technical editing by publisher. To access the final edited and published work see http://dx.doi.org/10.1021/acs.analchem.5b00220.RNA-cleaving DNAzymes provide a unique platform for developing biosensors. However, a majority of the work has been performed in clean buffer solutions, while the activity of some important DNAzymes in biological sample matrices is still under debate. Two RNA-cleaving DNAzymes (17E and 10-23) are the most widely used. In this work, we carefully studied a few key aspects of the 17E DNAzyme in human blood serum, including hybridization, cleavage activity, and degradation kinetics. Since direct fluorescence monitoring is difficult due to the opacity of serum, denaturing and nondenaturing gel electrophoresis were combined for studying the interaction between serum proteins and DNAzymes. The 17E DNAzyme retains its activity in 90% human blood serum with a cleavage rate of 0.04 min–1, which is similar to that in the PBS buffer (0.06 min–1) with a similar ionic strength. The activity in serum can be accelerated to 0.3 min–1 with an additional 10 mM Ca2+. As compared to 17E, the 10-23 DNAzyme produces negligible cleavage in serum. Degradation of both the substrate and the DNAzyme strand is very slow in serum, especially at room temperature. Degradation occurs mainly at the fluorophore label (linked to DNA via an amide bond) instead of the DNA phosphodiester bonds. Serum proteins can bind more tightly to the 17E DNAzyme complex than to the single-stranded substrate or enzyme. The 17E DNAzyme hybridizes extremely fast in serum. With this understanding, the detection of DNA using the 17E DNAzyme is demonstrated in serum.University of Waterloo || Natural Sciences and Engineering Research Council || Foundation for Shenghua Scholar of Central South University|| National Natural Science Foundation of China || Grant No. 21301195 Fellowship from the China Scholarship Council || CSC, Grant No. 20140637011

    Porphyrin Homeostasis Maintained by ABCG2 Regulates Self-Renewal of Embryonic Stem Cells

    Get PDF
    Under appropriate culture conditions, undifferentiated embryonic stem (ES) cells can undergo multiple self-renewal cycles without loss of pluripotency suggesting they must be equipped with specific defense mechanisms to ensure sufficient genetic stability during self-renewal expansion. The ATP binding cassette transporter ABCG2 is expressed in a wide variety of somatic and embryonic stem cells. However, whether it plays an important role in stem cell maintenance remains to be defined.Here we provide evidence to show that an increase in the level of ABCG2 was observed accompanied by ES colony expansion and then were followed by decreases in the level of protoporphyrin IX (PPIX) indicating that ABCG2 plays a role in maintaining porphyrin homoeostasis. RNA-interference mediated inhibition of ABCG2 as well as functional blockage of ABCG2 transporter with fumitremorgin C (FTC), a specific and potent inhibitor of ABCG2, not only elevated the cellular level of PPIX, but also arrest the cell cycle and reduced expression of the pluripotent gene Nanog. Overexpression of ABCG2 in ES cells was able to counteract the increase of endogenous PPIX induced by treatment with 5-Aminolevulinic acid suggesting ABCG2 played a direct role in removal of PPIX from ES cells. We also found that excess PPIX in ES cells led to elevated levels of reactive oxygen species which in turn triggered DNA damage signals as indicated by increased levels of gammaH2AX and phosphorylated p53. The increased level of p53 reduced Nanog expression because RNA- interference mediated inhibition of p53 was able to prevent the downregulation of Nanog induced by FTC treatment.The present work demonstrated that ABCG2 protects ES cells from PPIX accumulation during colony expansion, and that p53 and gammaH2AX acts as a downstream checkpoint of ABCG2-dependent defense machinery in order to maintain the self-renewal of ES cells

    Tumor-Like Stem Cells Derived from Human Keloid Are Governed by the Inflammatory Niche Driven by IL-17/IL-6 Axis

    Get PDF
    Alterations in the stem cell niche are likely to contribute to tumorigenesis; however, the concept of niche promoted benign tumor growth remains to be explored. Here we use keloid, an exuberant fibroproliferative dermal growth unique to human skin, as a model to characterize benign tumor-like stem cells and delineate the role of their "pathological" niche in the development of the benign tumor.Subclonal assay, flow cytometric and multipotent differentiation analyses demonstrate that keloid contains a new population of stem cells, named keloid derived precursor cells (KPCs), which exhibit clonogenicity, self-renewal, distinct embryonic and mesenchymal stem cell surface markers, and multipotent differentiation. KPCs display elevated telomerase activity and an inherently upregulated proliferation capability as compared to their peripheral normal skin counterparts. A robust elevation of IL-6 and IL-17 expression in keloid is confirmed by cytokine array, western blot and ELISA analyses. The altered biological functions are tightly regulated by the inflammatory niche mediated by an autocrine/paracrine cytokine IL-17/IL-6 axis. Utilizing KPCs transplanted subcutaneously in immunocompromised mice we generate for the first time a human keloid-like tumor model that is driven by the in vivo inflammatory niche and allows testing of the anti-tumor therapeutic effect of antibodies targeting distinct niche components, specifically IL-6 and IL-17.These findings support our hypothesis that the altered niche in keloids, predominantly inflammatory, contributes to the acquirement of a benign tumor-like stem cell phenotype of KPCs characterized by the uncontrolled self-renewal and increased proliferation, supporting the rationale for in vivo modification of the "pathological" stem cell niche as a novel therapy for keloid and other mesenchymal benign tumors

    Comparative genetic architectures of schizophrenia in East Asian and European populations

    Get PDF
    Schizophrenia is a debilitating psychiatric disorder with approximately 1% lifetime risk globally. Large-scale schizophrenia genetic studies have reported primarily on European ancestry samples, potentially missing important biological insights. Here, we report the largest study to date of East Asian participants (22,778 schizophrenia cases and 35,362 controls), identifying 21 genome-wide-significant associations in 19 genetic loci. Common genetic variants that confer risk for schizophrenia have highly similar effects between East Asian and European ancestries (genetic correlation = 0.98 ± 0.03), indicating that the genetic basis of schizophrenia and its biology are broadly shared across populations. A fixed-effect meta-analysis including individuals from East Asian and European ancestries identified 208 significant associations in 176 genetic loci (53 novel). Trans-ancestry fine-mapping reduced the sets of candidate causal variants in 44 loci. Polygenic risk scores had reduced performance when transferred across ancestries, highlighting the importance of including sufficient samples of major ancestral groups to ensure their generalizability across populations

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    Get PDF
    Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference
    corecore