2,611 research outputs found

    PIV characterisation of flocculation dynamics and floc structure in water treatment

    Get PDF
    Particle flocculation with chemical flocculant addition is an essential step in water treatment. The performance of flocculation and the property of the flocs formed affect the overall results of the treatment process. In addition to particulate impurities, the presence of organic matter in water, such as natural organic materials (NOM), also influence the effectiveness of chemical flocculation. In this paper, the PIV system was employed to investigate the flocculation dynamics for different flocculants in different model waters. With the PIV and image analysis, the change in particle size distribution could be well recorded. Using the sequence of flocculation, shear breakage and re-flocculation on a jar-test device together with the PIV system, the rate of floc formation, the strength of the flocs, the recovery of broken flocs, and the morphological and structural features of the flocs were characterized. The results indicated that the adsorption of HA on the particle will stabilized the particles, hence hindered the flocculation process. Sweep flocculation using a higher chemical coagulant dosage was an effective means of process enhancement for the removal of particulates and associated organic matter. The dynamics of A-B-R process was characterized by particle size distribution (PSD) measurement with PIV setup. The particle strength and reversibility capability were examined. Strength index showed the HA flocs have comparable strength, while recovery index indicated a less recovery capability with the increasing of HA concentration after exposure to a higher shear, especially for ferric HA flocs. It appears that the bonds holding HA flocs together are not purely physical bonds given the limited regrowth seen. Finally, evolution of floc structure during A-B-R process was analysed by investigated the fractal dimension Db. The results were generally consistent with previous PSD measurements. It suggested that the structure of flocs in breakage became more compact with little permeability. An increase in floc compaction provides a further explanation for the limited regrowth for most of flocs. According to the performances of alum and ferric, it can be noticed that HA flocs have different properties dependent on which chemical coagulant is used. Alum produced larger HA flocs which endured a higher recovery capability after exploring higher shear, hence, compared to ferric, it could be preferred to using in the practical enhanced coagulation unit.postprin

    Low temperature growth of fully covered single-layer graphene using a CoCu catalyst.

    Get PDF
    A bimetallic CoCu alloy thin-film catalyst is developed that enables the growth of uniform, high-quality graphene at 750 °C in 3 min by chemical vapour deposition. The growth outcome is found to vary significantly as the Cu concentration is varied, with ∼1 at% Cu added to Co yielding complete coverage single-layer graphene growth for the conditions used. The suppression of multilayer formation is attributable to Cu decoration of high reactivity sites on the Co surface which otherwise serve as preferential nucleation sites for multilayer graphene. X-ray photoemission spectroscopy shows that Co and Cu form an alloy at high temperatures, which has a drastically lower carbon solubility, as determined by using the calculated Co-Cu-C ternary phase diagram. Raman spectroscopy confirms the high quality (ID/IG < 0.05) and spatial uniformity of the single-layer graphene. The rational design of a bimetallic catalyst highlights the potential of catalyst alloying for producing two-dimensional materials with tailored properties

    Quantifying Robotic Swarm Coverage

    Full text link
    In the field of swarm robotics, the design and implementation of spatial density control laws has received much attention, with less emphasis being placed on performance evaluation. This work fills that gap by introducing an error metric that provides a quantitative measure of coverage for use with any control scheme. The proposed error metric is continuously sensitive to changes in the swarm distribution, unlike commonly used discretization methods. We analyze the theoretical and computational properties of the error metric and propose two benchmarks to which error metric values can be compared. The first uses the realizable extrema of the error metric to compute the relative error of an observed swarm distribution. We also show that the error metric extrema can be used to help choose the swarm size and effective radius of each robot required to achieve a desired level of coverage. The second benchmark compares the observed distribution of error metric values to the probability density function of the error metric when robot positions are randomly sampled from the target distribution. We demonstrate the utility of this benchmark in assessing the performance of stochastic control algorithms. We prove that the error metric obeys a central limit theorem, develop a streamlined method for performing computations, and place the standard statistical tests used here on a firm theoretical footing. We provide rigorous theoretical development, computational methodologies, numerical examples, and MATLAB code for both benchmarks.Comment: To appear in Springer series Lecture Notes in Electrical Engineering (LNEE). This book contribution is an extension of our ICINCO 2018 conference paper arXiv:1806.02488. 27 pages, 8 figures, 2 table

    Genomic-Bioinformatic Analysis of Transcripts Enriched in the Third-Stage Larva of the Parasitic Nematode Ascaris suum

    Get PDF
    Differential transcription in Ascaris suum was investigated using a genomic-bioinformatic approach. A cDNA archive enriched for molecules in the infective third-stage larva (L3) of A. suum was constructed by suppressive-subtractive hybridization (SSH), and a subset of cDNAs from 3075 clones subjected to microarray analysis using cDNA probes derived from RNA from different developmental stages of A. suum. The cDNAs (n = 498) shown by microarray analysis to be enriched in the L3 were sequenced and subjected to bioinformatic analyses using a semi-automated pipeline (ESTExplorer). Using gene ontology (GO), 235 of these molecules were assigned to ‘biological process’ (n = 68), ‘cellular component’ (n = 50), or ‘molecular function’ (n = 117). Of the 91 clusters assembled, 56 molecules (61.5%) had homologues/orthologues in the free-living nematodes Caenorhabditis elegans and C. briggsae and/or other organisms, whereas 35 (38.5%) had no significant similarity to any sequences available in current gene databases. Transcripts encoding protein kinases, protein phosphatases (and their precursors), and enolases were abundantly represented in the L3 of A. suum, as were molecules involved in cellular processes, such as ubiquitination and proteasome function, gene transcription, protein–protein interactions, and function. In silico analyses inferred the C. elegans orthologues/homologues (n = 50) to be involved in apoptosis and insulin signaling (2%), ATP synthesis (2%), carbon metabolism (6%), fatty acid biosynthesis (2%), gap junction (2%), glucose metabolism (6%), or porphyrin metabolism (2%), although 34 (68%) of them could not be mapped to a specific metabolic pathway. Small numbers of these 50 molecules were predicted to be secreted (10%), anchored (2%), and/or transmembrane (12%) proteins. Functionally, 17 (34%) of them were predicted to be associated with (non-wild-type) RNAi phenotypes in C. elegans, the majority being embryonic lethality (Emb) (13 types; 58.8%), larval arrest (Lva) (23.5%) and larval lethality (Lvl) (47%). A genetic interaction network was predicted for these 17 C. elegans orthologues, revealing highly significant interactions for nine molecules associated with embryonic and larval development (66.9%), information storage and processing (5.1%), cellular processing and signaling (15.2%), metabolism (6.1%), and unknown function (6.7%). The potential roles of these molecules in development are discussed in relation to the known roles of their homologues/orthologues in C. elegans and some other nematodes. The results of the present study provide a basis for future functional genomic studies to elucidate molecular aspects governing larval developmental processes in A. suum and/or the transition to parasitism

    Induction of Protective Immunity against Chlamydia muridarum Intravaginal Infection with a Chlamydial Glycogen Phosphorylase

    Get PDF
    We evaluated 7 C. muridarum ORFs for their ability to induce protection against chlamydial infection in a mouse intravaginal infection model. These antigens, although encoded in C. muridarum genome, are transcriptionally regulated by a cryptic plasmid that is known to contribute to C. muridarum pathogenesis. Of the 7 plasmid-regulated ORFs, the chlamydial glycogen phosphorylase or GlgP, when delivered into mice intramuscularly, induced the most pronounced protective immunity against C. muridarum intravaginal infection. The GlgP-immunized mice displayed a significant reduction in vaginal shedding of live organisms on day 14 after infection. The protection correlated well with a robust C. muridarum-specific antibody and a Th1-dominant T cell responses, which significantly reduced the severity but not overall incidence of hydrosalpinx. The GlgP-induced partial protection against upper genital tract pathology suggests that GlgP may be considered a component for a multi-subunit vaccine. These results have demonstrated that intramuscular immunization of mice with purified proteins can be used to identify vaccine antigens for preventing intravaginal infection with C. trachomatis in humans

    Fatal Outcome in Bacteremia is Characterized by High Plasma Cell Free DNA Concentration and Apoptotic DNA Fragmentation: A Prospective Cohort Study

    Get PDF
    INTRODUCTION: Recent studies have shown that apoptosis plays a critical role in the pathogenesis of sepsis. High plasma cell free DNA (cf-DNA) concentrations have been shown to be associated with sepsis outcome. The origin of cf-DNA is unclear. METHODS: Total plasma cf-DNA was quantified directly in plasma and the amplifiable cf-DNA assessed using quantitative PCR in 132 patients with bacteremia caused by Staphylococcus aureus, Streptococcus pneumoniae, ß-hemolytic streptococcae or Escherichia coli. The quality of cf-DNA was analyzed with a DNA Chip assay performed on 8 survivors and 8 nonsurvivors. Values were measured on days 1-4 after positive blood culture, on day 5-17 and on recovery. RESULTS: The maximum cf-DNA values on days 1-4 (n = 132) were markedly higher in nonsurvivors compared to survivors (2.03 vs 1.26 ug/ml, p<0.001) and the AUCROC in the prediction of case fatality was 0.81 (95% CI 0.69-0.94). cf-DNA at a cut-off level of 1.52 ug/ml showed 83% sensitivity and 79% specificity for fatal disease. High cf-DNA (>1.52 ug/ml) remained an independent risk factor for case fatality in a logistic regression model. Qualitative analysis of cf-DNA showed that cf-DNA displayed a predominating low-molecular-weight cf-DNA band (150-200 bp) in nonsurvivors, corresponding to the size of the apoptotic nucleosomal DNA. cf-DNA concentration showed a significant positive correlation with visually graded apoptotic band intensity (R = 0.822, p<0.001). CONCLUSIONS: Plasma cf-DNA concentration proved to be a specific independent prognostic biomarker in bacteremia. cf-DNA displayed a predominating low-molecular-weight cf-DNA band in nonsurvivors corresponding to the size of apoptotic nucleosomal DNA

    Significant association between polymorphism of the erythropoietin gene promoter and myelodysplastic syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Myelodysplastic syndrome (MDS) may be induced by certain mutagenic environmental or chemotherapeutic toxins; however, the role of susceptibility genes remains unclear. The G/G genotype of the single-nucleotide polymorphism (SNP) rs1617640 in the erythropoietin (<it>EPO</it>) promoter has been shown to be associated with decreased EPO expression. We examined the association of rs1617640 genotype with MDS.</p> <p>Methods</p> <p>We genotyped the EPO rS1617640 SNP in 189 patients with MDS, 257 with acute myeloid leukemia (AML), 106 with acute lymphoblastic leukemia, 97 with chronic lymphocytic leukemia, 353 with chronic myeloid leukemia, and 95 healthy controls.</p> <p>Results</p> <p>The G/G genotype was significantly more common in MDS patients (47/187; 25.1%) than in controls (6/95; 6.3%) or in patients with other leukemias (101/813; 12.4%) (all <it>P </it>< 0.001). Individuals with the G/G genotype were more likely than those with other genotypes to have MDS (odd ratio = 4.98; 95% CI = 2.04-12.13). Clinical and follow up data were available for 112 MDS patients and 186 AML patients. There was no correlation between EPO promoter genotype and response to therapy or overall survival in MDS or AML. In the MDS group, the GG genotype was significantly associated with shorter complete remission duration, as compared with the TT genotype (<it>P </it>= 0.03). Time to neutrophils recovery after therapy was significantly longer in MDS patients with the G/G genotype (<it>P </it>= 0.02).</p> <p>Conclusions</p> <p>These findings suggest a strong association between the rs1617640 G/G genotype and MDS. Further studies are warranted to investigate the utility of screening for this marker in individuals exposed to environmental toxins or chemotherapy.</p

    Does owning a pet protect older people against loneliness?

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Pet ownership is thought to make a positive contribution to health, health behaviours and the general well-being of older people. More specifically pet ownership is often proposed as a solution to the problem of loneliness in later life and specific 'pet based' interventions have been developed to combat loneliness. However the evidence to support this relationship is slim and it is assumed that pet ownership is a protection against loneliness rather than a response to loneliness. The aim of this paper is to examine the association between pet ownership and loneliness by exploring if pet ownership is a response to, or protection against, loneliness using Waves 0-5 from the English Longitudinal Study of Ageing (ELSA)

    Monotonicity of Fitness Landscapes and Mutation Rate Control

    Get PDF
    A common view in evolutionary biology is that mutation rates are minimised. However, studies in combinatorial optimisation and search have shown a clear advantage of using variable mutation rates as a control parameter to optimise the performance of evolutionary algorithms. Much biological theory in this area is based on Ronald Fisher's work, who used Euclidean geometry to study the relation between mutation size and expected fitness of the offspring in infinite phenotypic spaces. Here we reconsider this theory based on the alternative geometry of discrete and finite spaces of DNA sequences. First, we consider the geometric case of fitness being isomorphic to distance from an optimum, and show how problems of optimal mutation rate control can be solved exactly or approximately depending on additional constraints of the problem. Then we consider the general case of fitness communicating only partial information about the distance. We define weak monotonicity of fitness landscapes and prove that this property holds in all landscapes that are continuous and open at the optimum. This theoretical result motivates our hypothesis that optimal mutation rate functions in such landscapes will increase when fitness decreases in some neighbourhood of an optimum, resembling the control functions derived in the geometric case. We test this hypothesis experimentally by analysing approximately optimal mutation rate control functions in 115 complete landscapes of binding scores between DNA sequences and transcription factors. Our findings support the hypothesis and find that the increase of mutation rate is more rapid in landscapes that are less monotonic (more rugged). We discuss the relevance of these findings to living organisms

    Linkage Mapping of Stem Saccharification Digestibility in Rice

    Get PDF
    Rice is the staple food of almost half of the world population, and in excess 90% of it is grown and consumed in Asia, but the disposal of rice straw poses a problem for farmers, who often burn it in the fields, causing health and environmental problems. However, with increased focus on the development of sustainable biofuel production, rice straw has been recognized as a potential feedstock for non-food derived biofuel production. Currently, the commercial realization of rice as a biofuel feedstock is constrained by the high cost of industrial saccharification processes needed to release sugar for fermentation. This study is focused on the alteration of lignin content, and cell wall chemotypes and structures, and their effects on the saccharification potential of rice lignocellulosic biomass. A recombinant inbred lines (RILs) population derived from a cross between the lowland rice variety IR1552 and the upland rice variety Azucena with 271 molecular markers for quantitative trait SNP (QTS) analyses was used. After association analysis of 271 markers for saccharification potential, 1 locus and 4 pairs of epistatic loci were found to contribute to the enzymatic digestibility phenotype, and an inverse relationship between reducing sugar and lignin content in these recombinant inbred lines was identified. As a result of QTS analyses, several cell-wall associated candidate genes are proposed that may be useful for marker-assisted breeding and may aid breeders to produce potential high saccharification rice varieties
    • …
    corecore