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Abstract  1 

Particle flocculation with chemical flocculant addition is an essential step in water treatment. 2 

The performance of flocculation and the property of the flocs formed affect the overall results 3 

of the treatment process. In addition to particulate impurities, the presence of organic matter 4 

in water, such as natural organic materials (NOM), also influence the effectiveness of 5 

chemical flocculation. In this paper, the PIV system was employed to investigate the 6 

flocculation dynamics for different flocculants in different model waters. With the PIV and 7 

image analysis, the change in particle size distribution could be well recorded. Using the 8 

sequence of flocculation, shear breakage and re-flocculation on a jar-test device together with 9 

the PIV system, the rate of floc formation, the strength of the flocs, the recovery of broken 10 

flocs, and the morphological and structural features of the flocs were characterized. The 11 

results indicated that the adsorption of HA on the particle will stabilized the particles, hence 12 

hindered the flocculation process. Sweep flocculation using a higher chemical coagulant 13 

dosage was an effective means of process enhancement for the removal of particulates and 14 

associated organic matter. The dynamics of A-B-R process was characterized by particle size 15 

distribution (PSD) measurement with PIV setup. The particle strength and reversibility 16 

capability were examined. Strength index showed the HA flocs have comparable strength, 17 

while recovery index indicated a less recovery capability with the increasing of HA 18 

concentration after exposure to a higher shear, especially for ferric HA flocs. It appears that 19 

the bonds holding HA flocs together are not purely physical bonds given the limited regrowth 20 

seen. Finally, evolution of floc structure during A-B-R process was analyzed by investigated 21 

the fractal dimension Db. The results were generally consistent with previous PSD 22 

measurements. It suggested that the structure of flocs in breakage became more compact with 23 

little permeability. An increase in floc compaction provides a further explanation for the 24 

limited regrowth for most of flocs. According to the performances of alum and ferric, it can 25 
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be noticed that HA flocs have different properties dependent on which chemical coagulant is 26 

used. Alum produced larger HA flocs which endured a higher recovery capability after 27 

exploring higher shear, hence, compared to ferric, it could be preferred to using in the 28 

practical enhanced coagulation unit.  29 

 30 

Keywords: Aggregation-breakage-re-flocculation; humic acid; hydrodynamics; particle image 31 

velocimetry (PIV). 32 

33 



 4 

1. Introduction  34 

Humic acids (HAs) are one of the main constitute of natural organic matter (NOM) in 35 

most water sources, resulting from the weathering and biodegradation of dead plants and 36 

animals [1, 2]. The presence of NOM in the water is a major concern not only to form the 37 

disinfection by-products, such as trihalomethanes (THMs), but to reduce the effectiveness of 38 

filtration processes, such as membrane fouling [3, 4]. Since United States Environmental 39 

Protection Agency has proposed that enhanced coagulation is a best available technology for 40 

NOM removal [5, 6], extensive studies are addressed on the performance of humic acid 41 

coagulation [7-9], however little thought is given to the physiochemical characteristics of HA 42 

flocs. It includes floc size, compaction, strength and the potential to regrow after being 43 

broken.  44 

Enhanced coagulation is still a shear-induced flocculation, which means the shear 45 

flow is a main reason to result in collisions which cause the flocs to grow. However, they can 46 

still be subjected to higher shear rates where the flocs have to resist the corresponding 47 

stresses [10]. By use of model spherical particles, such as latex beads, it has been previously 48 

shown that particle suspensions destabilized with an ionic salt (i.e. NaCl) will reform to their 49 

initial size if the original velocity gradient is subsequently reapplied [11]. This behaviour is 50 

known as reversible breakage. However, in most instances where conventional metal 51 

coagulants and polymers are used for the aggregation of small particle suspensions (such as 52 

precipitated solids), irreversible breakage is usually seen, such that the initial floc size is 53 

never subsequently achieved after breakage. 54 

The irreversibility of aggregates during cycled shear is most likely the result of 55 

particle-flocculant bond breakage during fragmentation, hence the reorganisation and 56 

restructuring can both occur. Experimental shear-induced coagulation-fragmentation 57 

processes [11-14] found that the fractal dimension shifts to a larger value compared to the 58 



 5 

initial one, which showed a more compact structure formed during the cycled shear. 59 

However, there has been no previous work showing the regrowth potential of HA flocs with 60 

different coagulants and the structure restructuring and reorganisation during a cycled shear 61 

schedule. Thus, an understanding of the reversible potential for natural organic flocs may 62 

provide an important addition to the well-studied field of HA enhanced flocculation. 63 

The structure of the HA containing flocs is non-homogeneous and should be 64 

described by the fractal scaling law [15-17]. This fractal structure would affect the properties 65 

of the flocs during aggregation-breakage-regrowth process. Although, more research effort 66 

has been made to specify the properties of HA containing flocs, there is no study to report the 67 

exact influence of the fractal structure on the hydrodynamic behaviours of flocs formed in 68 

water treatment. Therefore, it merits more efforts to investigate the hydrodynamic properties 69 

of the HA containing flocs and their relationship with the fractal structure of the flocs. 70 

In present work, a series of the standard jar-tests were carried out to predict the 71 

overall result of water flocculation and sedimentation. ζ-potential, turbidity removal and HA 72 

reduction were determined for the particle suspension at various coagulant dosage. An 73 

improved experimental facility for characterization of the PSD dynamics was developed by 74 

making use of particle image velocimetry (PIV) coupled with image-analysis system. This 75 

non-intrusive measurement of PSD was performed to characterize the HA flocs during 76 

aggregation-breakage-regrowth (A-B-R) process. Morphology evolution indicated by surface 77 

fractal dimension, breakage and regrowth potential of different HA flocs were evaluated with 78 

different coagulants.  79 

 80 

2. Materials and Methods 81 

 82 

2.1 Model waters and jar-test flocculation experiments  83 
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Humic acid (HA) (Florida peat humic acid reference: 1R103H-2) was obtained from 84 

International Humic Substances Society, and the stock HA solution was made by dissolving 85 

the HA into de-ionized water. Kaolin (Aldrich, Milwaukee, WI) with a mean size of around 86 

2.6 µm was used for making particle suspensions. Three types of the model waters that 87 

contained 10 mg/L kaolin with an initial turbidity of 12 NTU and different HA contents were 88 

prepared for the experimental study, including (1) HA0 – no HA addition, (2) HA3 - 3 mg/L 89 

HA in water measured in terms of dissolved organic carbon (DOC), and (3) HA10 - 10 mg 90 

DOC/L of HA. Two flocculants – alum (Al2(SO4)3·14H2O) (BDH Chemicals, England) and 91 

ferric chloride (FeCl3·6H2O) (UNI-Chem, Mumbai, India) - were tested for the flocculation 92 

performance.   93 

Standard jar-test flocculation and sedimentation experiments were conducted at room 94 

temperature (~22 ℃) on the model waters with a jar-test device (ZR4-6, Zhongrun, Shenzhen, 95 

China). The jar-tester consisted of six 1-L rectangular beakers, each was filled with 500 mL 96 

water, and the mixing was provided by with flat paddle mixers (5.0 × 4.0 cm2). For each 97 

model water, a flocculant, alum or ferric, was added at various dosages from 0 to 50 mg/L 98 

into the six beakers. Throughout a flocculation experiment, the water pH was monitored by a 99 

pH meter (420A, Orion, Boston, MA). 1 M NaHCO3 was used to adjust the solution pH to a 100 

proper range for the different flocculant dosages, i.e. pH~7.0 for alum flocculation and 101 

pH~6.5 for ferric flocculation.   102 

For a jar-test run, the water after the chemical addition was mixed rapidly at 100 rpm 103 

for 60 sec. A sample of 10 mL was then withdrawn from each beaker for particle ζ-potential 104 

measurement by a laser ζ-potential analyzer (Delsa 440SX, Coulter, Amherst, MA). 105 

Following the rapid mixing, the water in the jar-test beakers was mixed for flocculation at a 106 

slower rate of 30 rpm for 40 min followed by 30 min of sedimentation. The supernatant was 107 

collected, for which the turbidity and HA residues were analyzed. The turbidity was 108 
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measured with a Turbidimeter (2100N, HACH, Loveland, CO), and the DOC in water was 109 

measured by a TOC analyzer (5000A, Shimadzu, Kyoto, Japan). In addition, based on the ζ-110 

potential measurement and jar-test results, the optimal dose of a flocculant for a model water 111 

could be determined. The optimal dose was then used for the flocculation-breakage-112 

reflocculation experiment on the model water characterized by the PIV technique.  113 

 114 

2.2 Particle image velocimetry (PIV) for particle size distribution measurement  115 

A PIV system was employed to track the change in particle size distribution (PSD) 116 

during a flocculation experiment. PIV is an advanced and powerful flow visualization and 117 

particle tracking technique [18]. As a non-intrusive optical setup, the PIV was able to capture 118 

the image of particles in a jar-test beaker within a millisecond (Figure 1). The PIV system 119 

consists of a laser illumination setup, a high-speed CCD video camera and a process control 120 

and image processing software package. A pulsed laser beam generated from the source 121 

(Coherent, Inc., Santa Clara, USA) was expanded to a thin laser light sheet by a combination 122 

of a cylindrical and a spherical lenses. The laser sheet illuminated a planar region of the water 123 

for visualization of the particles and flocs in the flocculation tank (beaker). The images of 124 

laser-illuminated particles could be captured by a high speed CCD camera (PCO.imaging 125 

1200 with a resolution of 1280×1024 pixels). The PIV system was controlled by a computer 126 

with dedicated software (PCO.camware) for laser flushing, CCD recording, image acquisition 127 

and storage. Images were processed with an image analysis system (Scion Image, Frederick, 128 

MD) for PSD determination. For a floc of irregular shape, its size, d, was calculated in terms 129 

of the equivalent diameter by d = (4A/π)1/2, where A is the projected area of the floc. Based on 130 

calibration, the PIV system had a resolution of around 9 µm for particle tracking and imaging 131 

in the present flocculation study. More than 40 consecutive images within a minute were 132 
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analyzed to produce a size distribution of the particles, and the result was presented as either 133 

a number-based discrete PSD or a volume-based discrete PSD. 134 

In addition to size measurement, particle image analysis also can provide more 135 

information about the morphological and structural feature of the aggregate flocs. For the 2-D 136 

projected particle images, a boundary fractal dimension was used to characterize the fractal 137 

property of the flocs. The boundary fractal dimension defines how the projected areas of the 138 

particles scale up with the length of the perimeter [14, 16]. Accordingly, the boundary fractal 139 

dimension, Db, may be determined from the correlation [16, 19] as follows,  140 

                  bDPA /2∝                                                                                                  (3) 141 

where P is the perimeter of an aggregate. Db ranges from 1 to 2, and there is no 142 

straightforward relationship between Db and the mass fractal dimension for a particle 143 

population [15]. Nonetheless, a higher Db value often suggests a more fractal structure of the 144 

objects with a less spherical shape and irregular or rough surface [16].  145 

 146 

2.3 Flocculation-breakage and reflocculation test for floc strength and re-growth 147 

A single beaker jar-test device was used together with the PIV for characterization of 148 

the flocculation dynamics (Figure 1). The jar-tester included a glass rectangular tank 149 

(L×W×H = 80 × 80 × 200 mm) equipped with a flat paddle mixer that was driven by a DC 150 

power supply. The flocculation procedure on a model water was the same as previous 151 

described, i.e., after the chemical addition a pre-determined dose, the water was stirred 152 

rapidly at 100 rpm for 60 s followed by a slow mixing at 30 rpm for 30 min. Upon the 153 

completion of flocculation, the shear breakage and then re-flocculation experiment was 154 

carried out. The breakage of flocs was conduced at 100 rpm for 15 min, which was followed 155 

by re-flocculation with slow mixing at 30 rpm for 30 min. During the course of flocculation-156 
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breakage-reflocculation, the images of particles and flocs in water was recorded and analyzed 157 

by the PIV system. The PSDs at different phases of the process were therefore obtained.  158 

The inter-particle bonds that hold aggregate flocs together are considered as the 159 

cohesive strength of the flocs. A size ratio method [20] is used here with an index (σ) to 160 

express the strength of particle flocs, i.e.,  161 

      12 / dd=σ                                                                                                   (1)  162 

where d1 and d2 are the mean sizes of the flocs before and after the shear breakage, 163 

respectively. A higher value of the σ index indicates a higher strength of the flocs to resist 164 

breakage when exposed to an elevated fluid shear.  165 

When the shear intensity was reduced after the breakage phase, re-flocculation of the 166 

particles could take place. A reversibility factor is used here to measure the re-flocculation 167 

potential of the particles when the shear is reinstalled to its original level. A modified size 168 

ratio approach may be applied to calculate the reversibility (γ) by  169 

      
21

23

dd
dd

−
−

=γ                                                                                                (2)  170 

where d3 is the mean size of the particle flocs after re-flocculation at the original shear rate. A 171 

higher reversibility index suggests a greater flocculation and re-growth capability of the flocs 172 

after the shear breakage.  173 

 174 

3. Results and Discussion 175 

 176 

3.1 Coagulation performance and water treatment results  177 

3.1.1 ξ-potentials of the kaolin particles at different flocculant doses 178 

The clean kaolin was negatively charged with an average ζ-potential of around -30 179 

mV (Figure 2). The presence of HA apparently increased the intensity of negative charges on 180 
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the particles, and the ζ-potential became more negative to -46 mV or below. Hence, HA 181 

would cause further stabilization of particles in water. This is likely due to the steric or elastic 182 

repulsion between particles brought about by the humic substances [21-23]. As anticipated, 183 

addition of the flocculants, alum or ferric, could effectively reduce the surface charge of the 184 

particles in all types of the model waters, resulting in particle destabilization. As the 185 

flocculant dose increased, the particle ζ-potentials in the model waters approached zero. 186 

Further increase in flocculant dose caused a certain extent of charge reversal of the particles 187 

(Figure 2). 188 

For pure kaolin with no HA in water, a small amount of the flocculants (5 mg/L or 189 

lower) would eliminate the ζ-potentials and destabilize the particles completely. As the HA 190 

content increased, the amount of alum or ferric required to achieve the same level of ζ-191 

potential reduction increased considerably. In comparison, alum appeared to be more 192 

effective than ferric for reducing the ζ-potential of kaolin particles (Figure 2). For example, 193 

with alum flocculation, the dose to neutralize the surface charge of kaolin was about 20 mg/L 194 

for the HA3 water and 30 mg/L for the HA10 water. In ferric chloride flocculation, the 195 

corresponding dose for charge neutralization was around 25 mg/L for HA3 and 30 mg/L for 196 

HA10. 197 

 198 

3.1.2 Jar-test results of the flocculation and turbidity removal 199 

The jar-test flocculation and sedimentation results for turbidity and HA removals 200 

from the model waters were in general agreement with would be expected from the ζ-201 

potential analysis. For clean kaolin without HA, a low flocculant dose of 5 mg/L was 202 

sufficient to bring about flocculation for turbidity removal (Figure 3). With the presence of 203 

HA in water, the flocculant demand for particle flocculation and turbidity removal increased 204 

significantly. Alum appeared to be slightly more effective than ferric chloride for particle 205 
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flocculation. Nonetheless, a low alum dose below 20 mg/L still left a high level of HA 206 

residue in water after flocculation and sedimentation. For the HA10 water with a high HA 207 

content, at least 20 mg/L of alum or 25 mg/L of ferric chloride was needed to have 208 

satisfactory flocculation and turbidity removal. 209 

Enhanced flocculation with a high flocculant dose was effective to remove humic 210 

substances from water (Figure 3). However, further increase of alum beyond 40 mg/L did not 211 

bring about a notable improvement in turbidity and HA removals. For ferric chloride 212 

flocculation, a dose of more than 40 mg/L actually worsened kaolin flocculation, particularly 213 

for the HA0 and HA3 waters, resulting in poor turbidity removal. Judging from the ζ-214 

potential changes and jar-test results, the optimal alum doses chosen for the PIV-flocculation 215 

experiments on the HA0, HA3 and HA10 waters were 10, 20 and 30  mg/L at pH~7.0, 216 

respectively, and the optimal ferric chloride doses were 10, 25, and 30 mg/L at pH~6.5, 217 

respectively. 218 

 219 

3.2 PSD dynamics, floc strength and re-flocculation capability  220 

3.2.1 PIV characterisation of the flocculation dynamics 221 

The PIV technique is shown to be a powerful tool for obtaining the particle size 222 

distributions in a dynamic fluid system. The PIV is a true non-intrusive particle tracking 223 

system that is able to perform real-time in-situ particle imaging acquisition for determination 224 

of the PSD dynamics during shear flocculation. The PSD of the flocs was expressed as the 225 

volume-based discrete PSD, i.e. the percentages of the total particle volume observed against 226 

a series of size sections (Figure 4). 227 

The PIV results showed the continuous floc formation and growth in the model waters 228 

during the chemical flocculation process. The PSD maintained a constant unimodal shape 229 

with an apparent peak. Accordingly, the peak size, the particle size section corresponding to 230 
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the peak of the PSD curve, was used here as the mean size of the particle population observed 231 

by the PIV. The change in the peak size of PSD with time illustrated well the flocculation-232 

breakage dynamics for a particle system. For both alum and ferric flocculation at the 233 

respective optimal doses, flocs were well formed with a peak size of 1000 μm or larger. The 234 

PSDs became rather stable in shape and position by the end of 30 min slow flocculation at 30 235 

rpm. Shear breakage at a high stirring rate (100 rpm) caused a rapid and remarkable shift of 236 

the PSDs to smaller sizes, and re-flocculation took place when the fluid shear was reduced 237 

(Figure 4). 238 

The PSD evolution showed effective alum and ferric flocculation on the jar-test 239 

device (Figure 4). For either one of the flocculants, the HA0 water with pure kaolin and no 240 

HA had the largest flocs formed, followed by the HA3 water and then the HA10 water. The 241 

humic substances in water reduced the effectiveness of the flocculants in forming larger flocs. 242 

However, with the higher doses used for HA3 and HA10 than that for HA0, floc formation in 243 

the HA3 and HA10 waters occurred at a faster rate in the early phase of flocculation than that 244 

in the HA0 water. In comparison, flocculation by alum produced larger flocs than ferric 245 

chloride for the same water samples (Table 1). Nonetheless, compared to alum, ferric 246 

chloride flocculation took place more rapidly after the chemical addition. For both 247 

flocculants, the growth of particle flocs became much slower approaching the end of 30 min 248 

slow flocculation. 249 

 250 

3.2.2 Breakage of the flocs and their re-flocculation 251 

A sudden increase in shear rate in the jar-test led to dramatic breakage of the 252 

aggregate flocs in all water samples. Within 1 min or so, the peak sizes of the PSDs were 253 

more than halved, according to the PIV observations (Figure 5). In agreement with previous 254 

findings [19, 24], the large alum or ferric flocs formed by slow flocculation were rather 255 
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fragile and vulnerable to shear breakage. After the initial break-up, the breakage of the flocs 256 

became much slower in the later phase of the breakage step. Thus, as suggested by others 257 

[25-27], a shear breakage process may be classified into two phases. In the first phase, rapid 258 

fragmentation of the flocs was the dominant phenomenon. In the following phase, particle 259 

erosion could be the main cause for the slower decrease of floc sizes. Between the two 260 

flocculants, ferric flocs appeared to be broken more easily to smaller flocs than alum flocs 261 

(Figure 5). 262 

As the shear was reduced to the original level, re-flocculation of the particles took 263 

place, but to different extents in different model waters. Alum flocs were seen to have 264 

considerable re-growth in size by flocculation (Figure 5). In comparison, ferric flocs were 265 

more difficult to be recovered after breakage. The HA0 water showed the highest level of re-266 

flocculation for both flocculants, followed by HA3 and HA10. The humic matter in flocs 267 

apparently decreased their potential of aggregation. In general, re-flocculation of the broken 268 

particle flocs was a much slower process than the original flocculation after the flocculant 269 

addition. Meanwhile, except for the alum flocs in HA0, the flocs recovered by re-flocculation 270 

were much smaller in size than the flocs before breakage. 271 

 272 

3.2.3 Strength and recoverability of the alum and ferric flocs 273 

Based on the change in peak size of the PSD, the strength and reversibility of the 274 

particle flocs formed in different model waters were determined (Table 1). After 15 min of 275 

shear breakage, the alum flocs in HA0 showed the highest strength index at 32%. Other types 276 

of flocs, including the alum flocs in HA3 and HA10 and all of ferric flocs had the strength 277 

indexes that were rather similar to each other. In re-flocculation at a slower shear rate, the 278 

alum flocs after breakage generally had a higher potential of recovery than the ferric flocs. 279 

Pure kaolin flocs formed by alum flocculation had a of recovery index of 46%. As the HA 280 
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content in water increased, the recovery indexes of the broken flocs decreased significantly. 281 

The alum flocs in HA10 had a low reversibility of only 10%. In agreement with the PIV 282 

observations, the ferric flocs in HA10 after breakage almost could not be re-flocculated with 283 

a recovery index as low as 4%. 284 

 285 

3.3 Morphology and Fractal Dimension of the Flocs 286 

3.3.1 Morphology and boundary fractal dimension of the flocs 287 

The high-quality PIV images (Figure 6) also allow detailed analysis of the 288 

morphology and structural features of the flocs suspended in water. According to equation 3, 289 

the boundary fractal dimension of the particle flocs can be approximated from the slope of 290 

the log-log regression of a series of projected areas versus perimeters of the particles. The Db 291 

of the flocs ranged from 1.11 to 1.22 after 30 min of slow flocculation (Figure 7). This is 292 

somewhat lower than the value of from 1.1 to 1.4 reported for the aggregates of polystyrene 293 

spheres [19]. For alum flocculation, flocs in the HA3 and HA10 waters had a slightly higher 294 

Db than that in HA0. For ferric chloride flocculation, flocs in HA10 had the highest Db, 295 

followed by HA3 and then HA0. 296 

A higher Db normally indicates a more irregular and/or elongated shape and a rougher 297 

surface for the particles, whilst a lower Db suggests a more spherical shape and a smoother 298 

surface of the particles. Based on the Db values, the flocs formed in the HA0 water at a low 299 

alum or ferric chloride dose were less fractal with a more regular shape and smooth surface. 300 

In comparison, the alum and ferric flocs formed by enhanced flocculation at higher flocculant 301 

doses were more fractal with an elongated shape and a rougher surface. 302 

 303 

3.3.2 Change of the floc morphology during breakage and re-flocculation 304 
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After the shear breakage, flocs in all of the model waters were smaller and became 305 

less fractal in shape with reduced Db values (Figure 7). When exposed to a higher shear, it is 306 

expected that the flocs would break at their weak points and rearrange into more stable 307 

structures [11, 28]. Fragmentation of the elongated flocs would break up the flocs into 308 

smaller pieces that were more close to spherical objects than the original flocs. As described 309 

previously, re-flocculation at a reduced shear rate resulted in regrowth of the floc sizes. 310 

Meanwhile, the fractal structure of the particle flocs was recovered partially as indicated by 311 

an increase in fractal dimension. Nonetheless, similar to the PSDs, the Db of the flocs could 312 

not be fully recovered to their original levels (Figure 7). After re-flocculation, the Db values 313 

of the alum flocs generally were somewhat higher than those of the ferric flocs, which was in 314 

agreement with the indication of the recovery index of the broken flocs (Table 1). 315 

 316 

3.3.3 Effect of the humic content on particle flocculation and floc strength. 317 

The addition of chemical coagulants would impose mainly two aspects of impact on 318 

particle flocculation in water. One effect is to destabilize particles in a suspension, which 319 

enhances particle flocculation. The other effect is to form hydrolyzing metal salts and their 320 

precipitates that adsorb particle colloids. [23, 29] pointed out that flocs formed following 321 

charge neutralization should have a high recoverability after breakage. In comparison, the 322 

precipitates of hydrolyzed flocculants would have a much lower recoverability after breakage 323 

[24, 30]. In the HA0 water with pure kaolin and no HA, the low dose of the coagulants could 324 

destabilize kaolin in the suspension by charge neutralization prior to particle flocculation. 325 

Nonetheless, the partially reversible breakage of the HA0 flocs suggests that the formation of 326 

the hydrolyzed flocculant precipitates and the adsorption of kaolin by the flocs of the 327 

precipitates also played an important role in removing particulate turbidity from water. For 328 

the HA3 and HA10 waters, more flocculants had to be used for kaolin adsorption and 329 
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removal. At a high flocculant dose, larger flocs of the precipitates would be formed more 330 

easily. In agreement with previous findings [24, 30], these types of the flocs of hydrolyzed 331 

precipitates in HA3 and HA10 waters had a lower recoverability after breakage compared to 332 

the HA0 flocs (Table 1). 333 

The content of organic matter appeared to be an important factor to determine the 334 

surface properties of formed flocs, such as adhesion, inter-particle interaction and floc 335 

stability [9, 31-32]. The HA content also affects the surface fractal dimension of the particle 336 

flocs [33]. In this study, the HA presence apparently facilitated the formation of a more 337 

porous and more fractal structure corresponding with a higher Db (Figure 7). These results are 338 

well consistent with the findings of [33]. They found that untreated kaolin formed flocs with 339 

a less fractal and more regular structure and the flos of kaolin with HA attained a more 340 

irregular and more fractal structure. 341 

  342 

4. Conclusion   343 

A series of standard jar-test flocculation experiments were performed on the model 344 

waters with kaolin and various amounts of humic acids, 0 (HA0), 3 mg/L (HA3) and 10 mg/L 345 

(HA10). Judging from the ζ-potential changes and the jar-test results, the optimal alum doses 346 

for the HA0, HA3 and HA10 waters were 10, 20 and 30 mg/L, respectively, and the optimal 347 

ferric chloride doses were 10, 25, and 30 mg/L, respectively. 348 

The PIV technique was employed successfully to record and characterize the PSD 349 

dynamics during the flocculation process in water treatment. The PIV system together with 350 

the image analysis technique is capable to track the change in PSD on a jar-test during 351 

particle flocculation and floc breakage and re-flocculation. Based on the change in the peak 352 

size of the PSD, the strength and reversibility of the particle flocs formed in different model 353 

waters were determined. The results showed that the alum flocs were somewhat stronger than 354 
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the ferric flocs. As the HA content in water increased, the recovery index of the flocs after 355 

breakage decreased significantly. The alum flocs in HA10 had a reversibility of only 10%, 356 

while the ferric flocs in HA10 after breakage could hardly be re-flocculated with a recovery 357 

index as low as 4%.  358 

According to the PIV images, the flocs formed initially after the flocculant addition 359 

were larger and more fractal with a higher value of boundary fractal dimension Db. After 360 

shear breakage, the flocs became smaller and less fractal with a lower Db. With the re-361 

flocculation, the fractal structure of the flocs could be only partially recovered. The results 362 

suggested that initially aggregates have a ramified, open structure that became more compact 363 

as exposure to a higher shear. An increase in floc compaction would lead to a reduction in 364 

floc size, which provides a further explanation for the limited regrowth of most flocs. The 365 

broken flocs seemed to become somehow difficult to form previous porous and fractal 366 

clusters. It indicated the chemical bonds or/and chemical adsorption formed in first 367 

aggregation phase were broken and flocs become more stable and rearrange into more 368 

compact structure during the recovery stage. 369 
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 456 

Figure captions    457 

Figure 1. Schematic diagram of the PIV coupling with an image analysis system. 458 

Figure 2. ζ-potential of the three particle systems as a function of the coagulant dose. 459 

Figure 3. Turbidity and TOC after the jar-test flocculation and sedimentation experiments as 460 

a function of the flocculant dose for the three particle systems. 461 

Figure 4. PSD profiles of the particles flocs for different HA contents in water during the A-462 

B-R process. 463 

Figure 5. Change of the peak size of flocs for different HA contents in water during the A-B-464 

R tests. 465 

Figure 6. Examples of the PIV images of particle flocs during a typical A-B-R process. 466 

Figure 7. Change of the fractal dimension of the particle flocs with different HA contents in 467 

water during the A-B-R tests. 468 

 469 

 470 

471 
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Figure 1. Schematic diagram of the PIV coupling with an image analysis system. 475 
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Figure 2. ζ-potential of the three particle systems as a function of the coagulant dose. 478 
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Figure 3. Turbidity and TOC after the jar-test flocculation and sedimentation experiments as 484 

a function of the flocculant dose for the three particle systems. 485 
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Figure 4. PSD profiles of the particles flocs for different HA contents in water during the A-491 

B-R process. 492 
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Figure 5. Change of the peak size of flocs for different HA contents in water during the A-B-497 

R tests. 498 
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 503 
 504 

Figure 6. Examples of the PIV images of particle flocs during a typical A-B-R process. 505 
 506 

 507 

508 



 28 

 509 

0 10 20 30 40 50 60 70 80
1.00

1.05

1.10

1.15

1.20

1.25

1.30

RegrowthBreakage

 

 

Fr
ac

tal
 d

im
en

sio
n,

 D
b

Time (min)

 HA0
 HA3
 HA10

Aggregation

0 10 20 30 40 50 60 70 80
1.00

1.05

1.10

1.15

1.20

1.25

1.30

RegrowthBreakage

 

 

Fr
ac

tal
 d

im
en

sio
n,

 D
b 

 

 HA0
 HA3
 HA10

Aggregation

a: Alum

b: Ferric

 510 

Figure 7. Change of the fractal dimension of the particle flocs with different HA contents in 511 

water during the A-B-R tests. 512 
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